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ABSTRACT

The neural network structures developed in this thesis

demonstrate the ability of parallel distributed processing in

solving adaptive control problems. Adaptive control theory

implies a combination of a control method and a model

estimation. The control method investigated is the Lyapunov

Model Reference Adaptive Control or MRAC and the model

estimation investigated is the linear least square estimator.

The neural network theory is introduced with emphasis on the

back-propagation algorithm. The implementation of the neural

network adaptive control structure is demonstrated on the

longitudinal dynamics of the X-29 fighter aircraft. Three

configurations are proposed to train the neural network

adaptive control structures to provide the appropriate inputs

to the unstable X-29 plant so that desired responses could be

obtained. These configurations are presented in eight cases,

which emulates stable systems like the X-29 closed-loop plant

or the optimal and the limited X-29 controllers, and unstable

systems like the X-29 plant or its inverse.
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I. INTRODUCTION

The parallel distributed processing structure of neural

networks provides the models for solving adaptive control

problems, as demonstrated in Ref. 1. Adaptive control involves

a self-learning controller which has the ability to adjust

itself in order to compensate for system changes. The control

and estimation functions of adaptive control will be

implemented on the H2 and H. controllers and on the plant of

the X-29 [Ref. 2].

Three configurations are proposed for training the neural

networks to provide the appropriate inputs to the X-29 plant

in which desired responses are obtained.

This thesis will investigate the applications of methods

that are based on neural network adaptive control theory to

the reduced order, linearized longitudinal dynamics model of

the X-29 aircraft. Chapter II introduces neural network theory

and the backpropagation algorithm. In Chapter III, two

traditional adaptive control methods will be briefly

discussed, a one-step-ahead control algorithm will be used to

design the control model, and a linear least square estimation

algorithm will be implemented to design the estimator model.

Chapter IV presents a description of the fighter as well as

the H2 and H, controllers that were designed to solve the

1



subsonic longitudinal instability of that aircraft. Chapter V

describes the hardware and software used for the experimental

set-up, in addition to model design considerations which

include design objectives, model structures selection, and

configurations. Chapter VI presents the results of the three

configurations' simulations. Finally, Chapter VII concludes

with some remarks on what has been achieved and what is

recommended for further studies.
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II. NEURAL NETWORK THEORY

A. ANALOGY TO THE BRAIN

Both the brain and the digital computer operate on

electrical signals, perform computational functions and are

composed of a very large number of simple elements. The major

difference is in the signal transmission time scale. The

computer involves microsecond or even nanosecond time scales

to transmit a signal compared to the slow nerve impulses.

Nevertheless, the advantage of the brain is, that its huge

computation rate is achieved by an enormous amount of parallel

units which surpass any modern computer system.

Neural network elements are inspired by the elementary

functions of the biological neuron. They are organized in such

a way that they exhibit some characteristics of the human

brain. That is, they have the ability to learn from

experience, to perform abstractions of inputs with relevant

information, and to generalize their knowledge-from previous

results.

By learning we mean that the neural network can modify its

behavior from the environment's response. The neural network

will self-adjust its weights to produce the desired output.

By abstraction we mean the ability to obtain idealized

prototypes from a given set of inputs.

3



By generalization we mean that the neural network trained

on input and output examples can produce a reasonable output

to an input differing from those it was trained on.

Figure 1 shows the typical neuron. The neuron consists of

three sections: the dendrites, the cell body, and the axon.

[Ref. 3)

CELL BODY

AXON DENDRITES

S YNAPSE

Figure . Biological Neuron

The dendrites receive signals from other neurons through

the synapses, the connection points. These inputs are

multiplied by the corresponding weight, the synapse strength,

and then summed in the cell body to determine if their

excitation level exceeds the specified threshold. On the

affirmative, the cell fires and sends a signal to the other

neurons through the axons.
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B. NEURAL NETWORK ARCHITECTURE

In a neural network, we refer to the neuron as a

processing element, PE. As shown in Fig. 2, the input paths

are comparable to the dendrites, the summation operation and

the transfer function to the cell body, and the output paths

to the axon. [Ref. 4]

x 0j 1i 1 W X s, muon
X i

y.1 = o Y f ( 11 d nfeir

Weights "Output

w< path

x .Processing
n element

Figure 2 Building Blocks of Neural Computing Network

1. Processing Elements

A processing element is a simple computational unit

which receives data from its input side, processes that data

through a summation operation and a transfer function, and

then sends the result to the neighboring processing elements

from its output side. Figure 3 represents a simple neural

network architecture. Many processing elements are grouped

into layers and are either fully or randomly connected to the

5



processing elements of the successive layers. These

connections determine in what manner the processing elements

will react with each other.

The neural networks for this research consist of

feedforward networks in which the connections feed the

information in only one direction. No recurrent layers or

feedback loops from a processing element to a previous one

will be considered.

Output .......

buffer

Hidden ......
layer

Input ..... .
buffer A

Figure 3 A Simple Neural Network Architecture

The first layer is the input buffer, which presents

the information to the network. The last layer is the output

buffer, which contains the response of the network to the

given input. Intermediate layers are referred to as hidden

layers.

6



Referring to control theory in state space, the input

buffer elements correspond to the elements of the input

variable, the output buffer elements to the ones of the output

variable, and the hidden units to the elements of the state

variable.

At any given time, each processing element has a

certain level of activation. The pattern and the level of

these activations determine the state of the system at that

given point.

2. Activation function Logic

Neuralworks Professional II/ Plus® development

software contains an activation function logic, shown in Fig.

4, which demonstrates the complexity of the activation

function of the system. The use of complex activation

functions may help the network to solve various nonlinear

systems. Activations may include a summation function, a

transfer function, a noise generator, scaling, limiting,

thresholding, and an output function. [Ref. 4]

The transfer function could be simply a linear, or

some monotonic function like the sigmoid and hyperbolic

tangent functions. A nonlinear network can be achieved by

using any of the last two functions since they provide

nonlinear responses.

7
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The sigmoid function is expressed as,

OUT = 1 / (1+e - x ) (2.1)

Its derivative can be simply represented in terms of itself,

OUT' = e-x/(l+e-x)
2

or OUT'(x) = out(x)*(1-out(x)) (2.2)

which saves a large amount of computation time. Equation (2.2)

defines a nonlinear gain that solves the noise-saturation

dilemma of Grossberg (1973); that is, it permits the network

to handle both, small and large signals. The central region of

high gain helps the small input signals to be processed, while

the decreasing slope or gain at both, negative and positive

extremes, are adequate for large signals.

Another nonlinear activation function which is often

used is the hyperbolic tangent function shown in Fig. 6. It is

expressed as follows:

OUT = tanh(x) or OUT =(eX-e--)/(eX+e-X) (2.3)

9



OUT

NET --

-I

Figure 6 Hyperbolic Tangent Function

As with the sigmoid function, its derivative can also be

expressed in terms of itself:

OUT'(x) = (1+out(x))*(1-out(x)) (2.4)

3. Learning rule

There are two distinct phases in the operation of the

network: learning and recall. Three types of learning exist:

supervised, unsupervised, and reinforcement.

Supervised learning involves modifying the connection

weights in response to a desired output presented to the

network corresponding to a given input. In this thesis, the

generalized delta learning rule was selected to reduce the

error between the actual and desired output of a processing

element.

If the network is not given any desired output, an

unsupervised learning process applies. The network forms

10



groups of similar input patterns, where each processing

element responds strongly to different groups.

Self-supervised learning falls between the supervised

and the unsupervised learning. The network will determine its

own desired solution and trains itself accordingly.

4. Recall rule

Recall is a simple feedforward network where no

learning takes place, i.e., no feedback between layers. An

input is presented to the network, the information is

propagated forward through the different layers, and an output

is obtained. It is a straightforward process, where only the

summation operation and the transfer function apply. It is an

integral part of the testing process which compares the

desired and the actual output of the network to determine the

current error.

C. BACK-PROPAGATION ALGORITHM

The supervised learning rule and the back-propagation

algorithm were chosen for the networks of this investigation.

Back-propagation has a particular way of handling errors. It

distributes the error by propagating the output error backward

through the connections of the previous layers.

When the signal is fedforward from the input to the

output, the error between the desired and actual output is

obtained. This error is, then, multiplied by the derivative of
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the transfer function, and backpropagated from the input to

the output layer to adjust or update the connections' weight.

The typical neural network using the back-propagation

algorithm is best represented with an input layer, an output

layer, and at least one hidden layer using a monotonic

activation function. (Ref. 4:pp. NC112]

For a better understanding of the next sections, a clear

notation is necessary. The superscript in brackets symbolizes

the layer being considered,

Xj[s] : current output state of jth neuron in layer s,

Wji[s]: weight on connection joining ith neuron in layer

s-i to jth neuron in layer s,

Ij[s] : weighted summation of inputs to jth neuron in

layer s.

1. The Global Error Function

The learning process has the aim of minimizing the

global error, E, by adjusting the weights in the network.

Therefore, the measure of the global error, E, is achieved by

subtracting the desired output d by the actual output o, as

follows:

E = 0.5*Z((di-o ) 2) (2.5)

where the term in parentheses is the raw local error. The

global error function, E, is also a differentiable function of
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all connection weights in the network. The derivative of E

with respect to I gives,

ej[S] = -dE/dIjIS] (2.6)

The raw local error of equation (2.5) is scaled by multiplying

it by the derivative of the transfer function, or

ej= -dE/dIj I s ]  (2.7)

= - (dE/doj) *(doj/dIj)

= (dj-0j)*f' (Ij)

The scaled local error, which is backpropagated, will be

stored in each processing element in its error field.

A gradient descent rule is used to determine if an

increment or decrement of the current weights, wij ], is

favorable to reduce the global error. The result by using the

chain rule and equation (2.6) is,

dE/dwjils] =(dE/dl j I s ] ) * (dIj[s) dwjfis ] )  (2.8)

= -ej[SJ*xi fs -l ]

The gradient descent rule used is,

Awjis] = -lcoef*(dE/dwjis) (2.9)
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where icoef is the learning coefficient or rate.

Combining equations (2.8) and (2.9) gives,

Aw3 is] = 1coef*ej[S]*xi1
s-l]  (2.10)

The error signal, e I'], of the above equation is applied only

to the elements of the output layer.

As to the elements of the hidden layers which do not

have any desired output, ejIs] is expressed as the derivative

of the transfer function multiplied by the error and the

weights backpropagated from the previous layer, or

ejls] = f'(IjSi])*Ek(ek[s+l]*wkjs+l]) (2.11)

2. Back-propagation Summary

The input layer will be presented with some data which

the network will propagate in a straightforward sense

(feedforward) to the output layer. At the same time, all the

summed inputs, Ij[s], and output states, xj[s], will be set

for each processing element.

For the output layer, the scaled local error from

equation (2.7) and the delta weight of equation (2.10) will be

calculated for each of its processing elements.

For the hidden layers, the scaled local error will be

calculated using equation (2.11) and the delta weight using

also equation (2.10).
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An update of all the weights will be performed by

adding these delta weights to their corresponding previous

weights. [Ref. 4:pp. NCl16]
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III. ADAPTIVE CONTROL SYSTEMS

An adaptive controller is one in which the control system

has the ability to adjust itself in order to compensate for

some changes in the system's parameters and environment.

Adaptive control is divided into two functions: a control

function and a model estimation function.

The design of an adaptive control system can be

conceptually simple when combining a particular parameter

estimation technique with any control law.

In this chapter, two traditional adaptive control methods

will be briefly discussed, a one step ahead control algorithm

will be used to design the control model, and a linear least

square estimation will be implemented with a recursive least-

squares algorithm to produce a predictor-corrector equation

used to design the estimator model.

A. TWO TRADITIONAL ADAPTIVE CONTROL METHODS

There are two traditional adaptive control methods that

are of interest to neural network control theory: the self-

tuning regulator of Astrom (STR) and the Lyapunov model

reference adaptive control (MRAC). The self-tuning regulator

block diagram is shown in Fig. 7. It is a classical feedback

system with on-line adjustable coefficients. [Ref. 5]
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Figure 7 Self-Tuning Regulator Control Block Diagram

For the approximation of the model that describes the

system being controlled, a least squares error parameter

identification technique is used. The regulator parameters are

adjusted during each control cycle according to the best

estimate of the system parameters.

With this method, the stability of the system is not

always guaranteed. During the learning phase the input signal

can become infinitely large, thus the model is not realizable.

If the least-squares error parameter estimates do not match

entirely the description of the system, the closed-loop system

performance will not satisfy the design specifications.

The second adaptive control method is the Lyaponuv model

reference adaptive control (MRAC), shown in Fig. 8. The system

is forced to follow a reference model. [Ref. 5]
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The regulator consists of two loops, an inner and an outer

loop. The inner loop is a feedback loop composed of the

regulator and the plant.

SModel I YM

Regulator Prm lr

Adjustment

Mechanism

Regulator Plant -y

Figure 8 Model Reference Adaptive Control Block Diagram

The outer loop is also a regulator loop. It adjusts the

parameters of the regulator by minimizing the error between

the plant output y and the model output y.. Therefore, the aim

is to determine the adjustment mechanism so that the system

being controlled tracks perfectly the reference model with

zero error.

The latter type of adaptive controller will be emphasized

in this thesis.
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B. ONE STEP AHEAD PREDICTION CONTROL

The first function of adaptive control is control. The

one-step-ahead controller is a very simple form of a control

law. The basic idea is that the control input at each point in

time is determined so as to bring the output, y(t+d) (where d

represents a time delay), to a desired output value, y*(t+d),

in one step. This controller works not only for linear systems

but also for a large class of nonlinear systems [Ref. 6:pp.

118-122].

The input-output properties of the system can be described

by three equivalent model formats: a left difference operator

representation, an observable state-space model, or a DARMA

(discrete time deterministic autoregressive moving average)

model [Ref. 6:p. 120]. The simplest to use for the development

of adaptive control algorithms is the (DARMA) model. That

model can be expressed as,

A(q)y(t) = B(q)u(t) where (3.1)

A (q-')= I+A 1 (q)+...+A n (q)

B(q-1 ) - Bo + .. +Bre ( q)

where A(g) and B(q) are matrix polynomials expressed in terms

of the backward shift operator, q-1 , the system output, y(t),

and the system input, vi(t). The terms in the past values of y

are the autoregressive components and the terms in the past

values of u are the moving-average components. A DARMA model
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can be compared to a controllable and observable state-space

model with an arbitrary initial state, or simply a transfer

function. [Ref. 6:p. 32]

Rearranging equation (3.1) by expanding a single input

single output (SISO) DARMA model in the shift operator gives,

y(t) = bju(t-1)+b 2u(t-2)+...-ajy(t-1)-a 2Y(t-2) ... (3.2)

which can be used to predict the output at the next time step,

y*(t+l) = blu(t)+b 2u(t-l)+...-aly(t)-a 2y(t-l)... (3.3)

where y*(t+l) is the predicted value of y(t+l). The control

input, u(t), of equation (3.3), which brings the system to a

desired value y*(t+l) in one step, can be solved as follows:

u(t) = 1/b, [y*(t+l)+ay(t)+a2y(t-l)+..

-b2u(t-1) ... J (3.4)

where the term y*(t+l) could be some reference input to the

system (Ref. l:p. 19].

The one step ahead prediction control law equation (3.4)

minimizes the quadratic cost function comprising the squared

prediction error:

J(t) = 1/2 [y(t+l)-y*(t+l)] 2  (3.5)
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Excessive effort may be required to bring y(t+l) to

y*(t+l) in one step. Therefore, some generalized cost

functions of the same form like the weighted one-step-ahead

controller [Ref. 6:p. 122], described below, could achieve a

compromise between the level of effort expended and the

prediction error.

If the past values of y(t) and u(t) are state variables,

the one step ahead controller becomes,

u(t) = K(t)x(t)+r(t) (3.6)

which is a state variable feedback with r(t) as the reference

input controller. From equation (3.4), the vector of past

outputs and inputs provides the state variables in equation

(3.6) which in turn provides a controller for an adaptive

algorithm [Ref. 6:pp. 120-170]. This one step ahead controller

could easily be modified to represent a weighted

sum of state variables and a reference input, i.e., a weighted

one-step-ahead controller,

u(t) = Z i W1j*Nj(t) (3.7)

where Nj(t)=[ r(t) u(t-1) u(t-2)...-y(t) -y(t-1) -y(t-2) ... ]

As mentioned in the chapter of neural network theory, the

input to a processing element is defined as the weighted sum

of all the element activations coming to its input, as shown
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in Fig. 2. Therefore, a direct comparison could be made

between the two previous statements, in that this form of

controller may well be represented by neural network

processing elements.

C. LINEAR LEAST SQUARE ESTIMATION

The second function of adaptive control is estimation. On-

line estimation techniques provide estimates for the system

parameters based on minimizing the quadratic cost functions as

in the case of a one-step-ahead controller.

The input-output characteristics of many linear and

nonlinear deterministic systems may be described by the

following model (Ref. 6:p. 50]:

y(t) = N(t-1)8T (3.8)

where y(t) denotes the system output

N(t-1) denotes a regression vector containing past

measurements of the input and output,

8 denotes a parameter vector.

A fir c oLuer DARMA model can be represented by [Ref. 6:p.

50],

y(t) = E bju(t-j)- E aky(t-k) (3.9)
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where j and k are indices for past input and output

measurements. Equation (3.9) can be expressed in the form of

equation (3.8) as follows:

N (t-1) =[u (t) u (t-1) u (t-2)..-y (t-1) -y (t-2) ...] (3.10)

8 = [bb 2b3 .. .ala 2a3] (3.11)

With equation (3.9) the prediction error becomes,

c(t,O) = y(t)-N(t-1)8T (3.12)

where c is used in the quadratic cost function to determine

some optimal value for 0 [Ref. 7:pp. 176-179],

J(8) = 1/2 zt[e] 2  (3.13)

where t covers 1 to n measurements. Equation (3.13) can be

minimized analytically by differentiating with respect to 0

and setting the result equal to zero, which on solving for 8

gives the linear least square estimate,

e = [i/n EtN(t)NT(t)]-I I/n ZtN(t)y(t) (3.14)

where e is the estimated parameter vector, equation (3.11).

The recursive least-squares algorithm [Ref. 7 :p. 307]
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summarizes in five equations the way of determining the

parameter vector, 0,

e(t+l) = e(t)+L(t)[y(t)-e T (t)N(t-1)] (3.15)

L(t) = P(t-l)N(t-l)[l+NT(t-l)P(t-l)N(t-l)]-I

P(t) = P(t-1)-[A(P,N,t)/B(P,N,t)]

A(P,N,t) = P(t-l)NT(t-l)N(t-l)P(t-l)

B(P,N,t) = 1+[NT(t-I)P(t-1)N(t-1)]

The first equation of (3.15) is a predictor-corrector

equation, while the others solve for the estimation gain,

L(t).

A special form of a predictor-corrector equation that is

used in many least-squares parameter estimation applications

is expressed as follows: [Ref. 6:p. 49]

0(t+l) = 0(t)+M(t)N(t-1)e(t) (3.16)

where 6(t) denotes the parameter estimate at time t

M(t) denotes an algorithm gain (possibly a matrix)

N(t-1) denotes the regression vector

e(t) denotes the model prediction error

The gain term, M(t), may vary from a scalar constant to a

covariance matrix, as seen in equation (3.15) with L(t).
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From the back-propagation learning rule discussed in the

previous chapter, equation (2.10) is very similar to the

linear least squares parameter estimator, equation (3.16),

Aw.iI s] = coef*e/tS]*xi(s-1  (2.10)

The learning coefficient, lcoef, is equivalent to the

algorithm gain, M(t); the error signal, e, is equivalent to

the model prediction error, e(t); and the activation value,

xi, is equivalent to the regression vector, N(t-1). Thus, a

neural network using the back-propagation algorithm is in a

sense a linear least squares estimator [Ref. 7:p. 22]. The

algorithms and theorems applicable to the linear least squares

estimation should, for the most part, be applicable to the

back-propagation neural network.

In summary, adaptive control is a combination of a control

method and a model estimation. For the control method, the

Model Reference Adaptive Control (MRAC) was chosen over the

Self-Tuning Regulator (STR). As to the controller itself, the

weighted one step ahead prediction controller was defined as

the weighted sum of the state variables and the reference

input. These weights or feedback gains are extracted from the

adjustment mechanism of MRAC in Fig. 8 and are determined by

minimizing the error between the network predicted output and

the model output.
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For the estimation model, which is the linear least

squares estimate, the predicted output was also defined as

some weighted sum of the terms in the regression vector. This

time, the weights are determined using the predictor-corrector

equation to minimize the error between the measured and

predicted output.

By combining the control and estimation models above, it

appears that the back propagation learning rule could produce

models for adaptive control problems.
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IV. X-29 MODERN AIRCRAFT

The purpose of this chapter is to present a description of

the modern aircraft chosen and to describe the H2 and H,

controllers that were previously designed to solve the

instability of that aircraft. The model used is the subsonic

longitudinal dynamics of the X-29 fighter aircraft. The X-29

is a single seat forward swept wing (FSW) demonstrator

aircraft built by the Grumman Corp. The FSW design offers a

new generation of tactical aircraft that is smaller, lighter

in weight, less costly, and highly efficient.

A. FIGHTER DESCRIPTION

The aerodynamic advantages of a forward swept wing have

been known since the 1940's. These advantages are: improved

maneuverability with spin-proof characteristics, better low-

speed handling, and reduced stalling speed. Another important

advantage is the low drag across the entire operational

envelope, particularly around the sonic speed, which permits

the use of a less powerful engine [Ref. 8]. The FSW design is

expected to reduce the transonic drag about 20%, and to

handle low speeds and high angles of attack much better than

any aft-swept wing (Ref. B:pp. 47]. However, no suitable

structure could be found in the 1940's to take full advantage

of these benefits. Only years later, did the use of advanced
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composite materials offer a solution. The graphite composite

material, strong and light in weight, was utilized on the FSW

to eliminate the adverse static aeroelastic coupling between

wing bending and torsion. The X-29, shown in Figure 9,

features close-coupled canard surfaces in front of the

forward-swept wings for primary pitch control. [Ref. 9]

Figure 9 Grumman X-29 FSW Demonstrator Aircraft

The small strake flaps at the rear of the aircraft provide

additional pitch at low speed.

To optimize the wing for various flight conditions, the

wing's two segment trailing edges (flaperons) behave as a

variable camber device for pitch control. This variable camber

control will permit the airplane to be optimized for low
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speed, maneuvering, cruising, and high-speed flight

conditions.

The X-29 longitudinal dynamics model considered in this

thesis is the analog reversion mode with the aircraft trimmed

at 0.5 mach, 30,000 feet. The original 83rd order model was

reduced to a 14 state model. The reduced model includes a

short period approximation of the aircraft longitudinal

dynamics, the vertical velocity, w, and pitch rate, q, and the

fourth order actuator dynamics for the three longitudinal

control surfaces, i.e., the canards, flaperons and strakes.

Figure 10 shows the open loop actuator/aircraft dynamics

model of the X-29 [Ref. 2]. The two separated commands, r, and

r2, are the input to the three control surface actuators with

r, controlling the canards and r2 controlling the flaps and

strakes. The outputs of the system are the two states, w and

q. The w-state becomes the angle of attack a when divided by

the initial forward velocity U0 . Therefore, the uncompensated

model has two inputs, two outputs, and 14 states. The control

inputs to the aircraft dynamics are the canards 6C, the

flaperons 6f, the strakes S. and their respective first and

second derivatives.

The uncompensated state variables are listed in Table I,

and the open loop poles are listed in Table II. Notice the

positive pole, 1.9550, on the real axis, meaning that the X-29

has an unstable short period mode.[Ref. 2]
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TABLE I : UNCOMPENSATED X-29 MODEL STATES

State Description Units

angle-of-attack rad

q pitch rate rad/sec

6C canard control input rad

6f flap control input rad

6, strake control input rad

c anard control rate rad/sec

Sf flap control rate rad/sec

t, strake control rate rad/sec

k canard control accel. rad/sec2

ef flap control accel. rad/sec2

3$ strake control accel. rad/sec 2

3 canard control jerk le+04 rad/sec3
C

flap control jerk le+04 rad/sec3

strake control jerk le+04 rad/sec3

TABLE II : UNCOMPENSATED X-29 OPEN-LOOP POLES

-2.2746e+02 ± 2.3201e+02i
-1.4491e+02
-1.4455e+02
1.9550e+00

-1.0031e+02
-2.7155e+00
-5.2506e+01 ± 4.8410e+Oli
-5.2518e+01 ± 4.8255e+Oli
-5.0067e+01
-2.0172e+01
-2.0115e+01
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B. B2 AND H. CONTROLLERS

The uncompensated X-29 model possesses poor disturbance

attenuation, high sensitivity to plant variations and modeling

errors, and a small control bandwidth.

Three weighing functions were utilized in Ref. 2 to

improve these performance characterizations by suppressing the

sensitivity function singular values as much as possible,

i.e., to make the loop gains as large as possible over a wider

bandwidth. The resultant X-29 augmented plant is a 16th order

system, in which the weighing functions added two states.

The two Riccati solution methods mentioned in Ref. 2

indicate that H2 and H. controllers must be the same size as

the augmented plant. Therefore, the X-29 controller has to be

of 16th order. As a result, the Hm, compensated X-29 has a

larger disturbance attenuation, lower sensitivity to

variations and modelling errors, and a wider control

bandwidth. [Ref. 2)

Two H. and H2 controllers have been designed to represent

the optimal-performance and the limited- performance models.

The closed-loop architecture for the H. compensated X-29

is shown in Fig. 11. The first block is the 16th order

controller and the second block the 14th order plant matrix.

[Ref. 2:p. 62]
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Closed-Loop Architecture

r+ d u Y
Controller P lnt

Figure 11 Closed-Loop Model of the H. Compensated X-29

Unlike the open loop actuator/aircraft dynamics model of

Fig. 10, the command vector r, composed of elements r, and r2 ,

represents the reference commands for the controlled outputs,

a and q. The H. controllers have been placed in series with

the fighter plant to be fed backward with a negative gain of

one. Therefore, the closed-loop system has two inputs, two

outputs and thirty states.

The longitudinal equations of motion may be expressed in

the following state variable form:

x(t) = Ax(t) + Bu (t) (5.1)

y(t) = C&(t) + Du(t)

where x(t) contains the state variables of the H.

controller and of the X-29 plant,
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9(t) contains the input variables r1 (t) and

r 2 (t), and

Y(t) contains the output variables a(t) and

q(t).

1. Optimal-Performance Model (Compensated)

The Matlab program used to obtain the closed-loop

state space representation of the H. optimal-performance model

is described in Ref. 2 pages 115 to 121.

The poles of the closed-loop model are listed in

Table III. The unstable short period pole, 1.9550, of the

open-loop system in Table II is mirrored into the left half

plane in Table III.

Safonov (Ref. 11] indicates that this mirror imaging

does not cause any limitation to the system's performance if

this pole is not the dominant one.

The compensated X-29 model provides precision flight

path control modes due to the multiple, independently

controlled surface configuration. Figure 12 shows a graphic

representation of these precision control modes,

where a denotes angle-of-attack,

8 denotes pitch attitude,

y denotes flight path angle,
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TABLE III: X-29 OPTIMAL PERFORMANCE CLOSED-LOOP POLES

-4.1327e+02
-2.2745e+02 ± 2.3201e+02i
-1.3068e+02 ± 4.6111e+01i
-5.3305e+01 ± 8.9700e+01i
-1.4491e+02
-1.4452e+02
-1.3014e+02
-1.3877e+01 ± 5.9243e+01i
-9.9794e+01
-5.2545e+01 ± 4.8359e+01i
-5.2503e+01 ± 4.8301e+01i
-7.4132e+01
-1.9550e+00
-2.7155e+00
-2.0379e+01 ± 2.1564e+01i
-2.0578e+01 ± 1.8907e+01i
-4.9199e+01 ± 6.5316e+00i
-4.2465e+01
-2.0184e+Ol
-2.0110e+01

Xp and s denote the aircraft principal and

stability axes.

The three precision longitudinal modes observed are [Ref.12]:

1. Vertical Translation: The aircraft's vertical velocity is
controlled at a constant 8 by varying a ,i.e., the
aircraft's flight path angle, y, or velocity vector, is
controlled while Xs remains fixed.

2. Direct Lift Control: The aircraft's flight path angle, y,
is controlled at a constant a by varying 0, i.e., the
aircraft's flight path angle, y, or velocity vector,
remains along the aircraft's axis Xp as Xs rotates.

3. Pitch Pointing: The aircraft pitch attitude, 0, is
controlled at a constant flight path angle, y, i.e., the
aircraft's flight path angle, y, or velocity vector
remains fixed while Xs rotates (6=).
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Figure 12 Precision Control Modes
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a. Time Domain

The longitudinal motion of the X-29 is described

in time and frequency domains. For the time domain, a pulse

input of one degree was applied for one second to each of the

two reference commands. The a(t) and q(t) time responses of

the compensated X-29 for input 1, ri, and for input 2, r2 , are

shown in Fig. 13 and 14.

The vertical translation mode is represented by

Fig. 13 in which input I separates q and 8 from a. It follows,

that there are negligible changes in q (order of magnitude 10-

1) compared to a, which has a fast response of 0.180 sec.

The direct lift control mode is represented by

Fig. 14, in which this time input 2 separates a from q. The X-

29 responds to input 2 with a negligible a (order of magnitude

10-1) and with a positive q rise time of 0.180 sec.

b. Frequency Domain

The continuous and discrete Bode frequency

responses of a(t) and q(t) for input 1, rl, and for input 2,

r2, are shown in Fig. 15 through 18.

The discrete frequency responses are dominated by

short period modes. For convenience, the high frequency

dynamics above the nyquist frequency have been removed for the

subsequent Bode plots.
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2. LiMited-Performance Model

The limited-performance X-29 can be characterized by a

smaller control and closed loop bandwidth, a larger

sensitivity to plant variations and modeling errors, and a

smaller disturbance attenuation [Ref. 2:p. 87].

The Matlab program used to obtain the closed loop state

space representation of the H. limited-performance model is

described in Ref. 2 pages 115 to 121. The closed loop poles

are listed in Table IV. Notice that the same unstable short

period pole, 1.9550, of the open loop system is mirrored into

the left half plane.

TABLE IV : X-29 LIMITED PERFORMANCE CLOSED-LOOP POLES

-2.2747e+02 ± 2.3201e+02i
-1.3612e+02
-1.4415e+02
-1.4494e+02
-1.4476e+02
-1.0023e+02
-5.1688e+01 ± 7.7445e+01i
-7.2313e+01
-3.7606e+01 ± 5.2777e+01i
-5.1716e+01 ± 5.0560e+Oli
-5.3298e+01 ± 4.7220e+Oli
-5.2512e+01 ± 4.8306e+Oli
-5.0505e+01
-3.6342e+01
-1.1889e+01 ± 1.2160e+Oli
-1 9539e+00
-2.7204e+00
-3.7372e+00
-9.6752e+00
-2.0387e+01 ± l.1180e+00i
-2.1180e+01
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a. Time Domain

As in the optimal performance case, a step input of

one degree for one second was applied to each of the two

reference commands.

The a(t) and q(t) time responses of the limited-

performance X-29 for input 1, rl, and for input 2, r2, are in

Fig. 19 and 20. The separation of a and q responses in both

inputs are not as pronounced as in the compensated X-29 case.

The step inputs with rise times of 0.5 sec and 0.8 sec to

input 2 indicate that the limited-performance model was slower

to react ,i.e., it is the result of a smaller closed loop

bandwidth [Ref. 2:p. 93].

Therefore, the precision flight path modes in the

case of the limited-performance X-29 are not as fully

accomplished as the optimal-performance case.

b. Frequency Domain

The continuous and Bode frequency responses of a(t)

and q(t) for input 1 and 2 are shown in Fig. 21 through 24. As

in the optimal performance model, the high frequency range was

limited to 50 hertz.
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V. EXPERIMENTAL SET-UP

In this chapter, a description of the hardware and

software used for the experimental set-up of the neural

network adaptive control will be given. Model design

considerations will follow which include design objectives,

model structure selections, and choices of configurations.

These configurations will be demonstrated with eight cases

which are the framework of the experiments in the use of

neural networks in adaptive control.

A. HARDWARE AND SOFTWARE REQUIRED

1. Hardware

All the research done in the area of data processing

was conducted on the SPARC® Station 2. To emulate a parallel

distributed processor which requires a very large memory

capacity and high speed, the choice of this station becomes

apparent. The SPARC® Station 2 uses a 32-bit architecture with

a 40 mHz central processing unit, Sun 4/75 CPU, and a memory

card with 48 mBytes of RAM. An internal hard disk drive of 207

mBytes and an external one of 996 mBytes were added to the

system.

The workstation provides a multitasking windowed

graphical environment, which greatly enhances the system's

flexibility in addition to the powerful UNIX operation system,

Sun OS 4.1.1.
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A 16-inch high resolution color monitor, a 0.25-inch

cartridge tape drive, and a 3.5-inch high density diskette

drive are also part of the system.

Overall, the station's power and flexibility prove to

be as important as its memory size and speed [Ref. 12].

2. Software

The Neuralworks Professional II/PLUS package by

Neuralware, Inc was the neural networks software used.

Neuralworks requires a minimum of 400 kBytes of base memory to

operate, and offers over a dozen different types of networks,

from the historical perception and the brain-state-in-a-box,

to the back-propagation and the Boltzmann machines.

Neuralworks has a user's guide, some tutorials, a

quick reference index, a menu listing, and many features of

file inputs and outputs. It supports a general file format for

inputting or outputting data to or from the network from

standard spreadsheet file formats such as Lotus 1-2-3 and

Excel, from the keyboard interface if formatted in ASCII

files, or from user defined modules written in the C

programming language. [Ref. 4:pp. UG215-UG250]

Neuralprobe instruments are available which provide

the ability to perform internal network diagnostics by

allowing specify information to be extracted from a selected

probe, and by presenting that information in a graphical form

for weights, error values, or activation levels.
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As mentioned earlier, the capability of accessing the

data internal to Neuralworks or presenting information to the

network, is made possible through the use of a user defined

module, USERIO. This method of access incorporates a user

written procedure (SimoMonika.c) to the network, as shown in

Appendix C.

The communication between Neuralworks and USERIO is

through a series of data pointers which are described in the

introductory pages of Appendix A.

Neuralworks uses user-defined control strategies to

supervise the input-output sequencing, the learning, and how

and when the information is passed through the layers of the

network. Neuralworks provides also default control strategies

for standard networks. The strategies are written in assembly

like language and are automatically loaded into memory when

the networks are loaded. The two control strategies used in

this research are shown in Appendix D. Both strategies will

be described in more detail in the following section.

The Matlab program with its signal processing and

robust-control tool boxes was used intensively during the

research. Written in C, Matlab provides a high-performance

interactive software package for scientific and engineering

computation [Ref. 13]. Matlab was employed mainly to perform

time and Bode frequency response analysis by comparing the

system and the actual neural network responses.
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In summary, the SPARC Station 2, Neuralworks

Professional II/PLUS, and the Pro-Matlab programs provided the

necessary tools to successfully investigate the neural network

adaptive control algorithm applied to the longitudinal

dynamics of the X-29.

B. MODEL DESIGN CONSIDERATION

1. Design objectives

In any implementation of a neural network adaptive

controller, the design objectives of the system, the

controller and the estimator, must be made clear.

The system must be controllable and observable in

order for the controller and the estimator to be realizable.

The Optimal and Limited performance cases fulfill both

conditions.

The controller has to be able to track some sort of

model reference or predicted output. Stability is also an

important aspect of a controller. The poles of the transfer

function have to be well within the unit circle for stability.

Zeros that are outside the unit circle are non-minimum phase

zeros. When the transfer function is inverted, these non-

minimum phase zeros become unstable poles. The unstable

inverse transfer function requires complex control devices for

exact tracking [Ref. 1:pp. 32-49]. The neural network adaptive

controller handles the non-exact tracking by determining the

control gains in some least square sense.
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The back-propagation learning rule performs this task with the

connections' weights.

The estimator has to model the input-output

relationships of the system. The selection of proper inputs is

a complex issue involving the input spectrum, the sampling

time, and the data record length.

a. Input Spectrum

All modes of the system must be excited, which is

known as the concept of persistent excitation [Ref. 7:p. 72].

This concept can be best achieved by a proper selection of the

input spectrum. The input spectrum must be selected in such a

way that the output signal strength exceeds any expected

noise. A high signal to noise ratio must be maintained to

conserve most of the information content of the input signal.

b. Aliasing and Sampling time

Since sampling the data leads to information

losses, it is important to select the proper sampling time.

The information loss is best described in the frequency

domain, where

ws = 2/T denotes the sampling frequency where

T is the sampling interval, and

WN = Ws/2 denotes the Nyquist frequency.

The part of the signal spectrum that corresponds

to frequencies higher than wN will be interpreted as a

contribution from lower frequencies. This superposition is
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known as "aliasing". Thus, the lost of information concerning

frequencies higher than the Nyquist frequency is due to

sampling. The best antialiasing filter is to sample fast

enough to eliminate the high-frequency noise contributions.

Nevertheless, sampling too fast may cause loss of

information in the low frequencies, while sampling too slow

may cause loss of information in the high frequency modes.

Another problem of sampling too fast is the energy

distribution problem in the higher frequencies which receive

more excitation. This phenomenon will be demonstrated in

Chapter VII with different plots of Bode frequency responses.

Figure 25 shows the resulting poles-zeros plot for

the selected sampling time of 0.02 seconds. Notice that the

poles and zeros are well distributed between z = 0.0 and z =

1.0, which is adequate for this investigation. Various trials

were conducted with different sampling times but no

improvements to the value of 0.02 seconds were found.
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Figure 25 Poles and Zeros of the X-29 Closed-Loop Plant

c. Data Record Length

The simulation used in the USERIO program could

generate data indefinitely. Modelling errors in the simulation

like aliasing, the presence of non-minimum phase zeros and

unstable poles propagate at a rate proportional to the power

of the absolute value of the system zeros [Ref. 5:p. 43]. To

prevent the modelling errors from growing unboundedly, the

simulation has to be reset every so many cycles. Resetting the

simulation adds noise to the frequency spectrum, as will be

demonstrated in the next chapter.

For linear, stable systems, the data will be

generated indefinitely since the errors will not grow

unbounded. For linear, unstable systems, the data record
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length will be determined by limiting the network outputs to

specific values. Finally, for non-linear systems using an

activation function like the hyperbolic tangent function, the

network output values will be limited to + 1.

2. Model Structure Selection

The model structure is based on the neural network

adaptive controller in which the estimation and control

algorithms are represented. Before selecting the model, the

number of input and output elements, the status (linearity or

non-linearity), and the order of the system have to be known.

This will determine the size of the regression vector which

defines the number of elements in each layer. Whenever

simulating a nonlinear model, hidden layers are utilized with

nonlinear transfer functions.

The closed-loop system representing either the optimal

or the limited-performance, is a 30th order linear system with

two inputs and two outputs. Hence, the selected model

structure could be a MIMO (multiple inputs - multiple outputs)

or a SIMO (single input - multiple outputs) if only one input

is activated at one time when testing the network. The chosen

network structure does not have any hidden layers since the

system is linear. The network should possess a regression

vector of 90 elements if represented by a SIMO model

structure, or 120 elements if represented by a MIMO model

structure (30 for each input and 30 for each output).
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Two basic neural network model structures were

developed for this research.

a. SIHO Neural Network Model Structure

Both, optimal and limited, performances could be

represented with SIMO model structures. Figure 26 shows the

SIMO neural network structure used for the 30 states closed

loop X-29 plant. The first layer, the feedback layer,

SIMO Model Structure

a(t) q(t)

del(-2) -3 -.. . 30 a(t-1) -30 Q(t-1) -.. . 30

consists of 89 elements. The first 29 elements are the past

input values del (t-2), del (t-3), . . .del (t-30), where the delay

is indicated in parentheses. The remaining 60 elements

represent the delayed past output measurements, 30 for a(t)

and 30 for q(t).
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The command layer, the second layer, is a

replicate of the first layer with the exception of the

reference input, r(t-1), which is needed for the control law.

The control layer, the third layer, consists of a

single element, del(t-1), the control input. The connections

between the control input and the command layer elements are

weighted with a fixed value of zero, since the command layer

was intentionally included in the network only to represent

the regression vector, i.e., no learning is taking place. For

control law purposes, only the connection between the

reference input, r(t-1), and the control input, del(t-1), is

weighted with a fixed value of one. Therefore, r(t-l) equals

del(t-l).

The last layer is the output layer. The output

layer is fully connected with variable weights to the control

and the feedback layers.

Notice that this network has no hidden layers

between the control and the output layers since all inputs are

directly connected to the output layer. Nevertheless, the

single element in the third layer becomes a hidden layer in

itself, since it relays the outputs of layer two to layer

four.

The estimation process begins when the activation

value of each output element is compared directly to its model

predicted output, and the current error is back-propagated

through the control and feedback layers by adjusting their weights.
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b. IMO Neural Network Model Structure

Figure 27 shows a MIMO model structure used for

the 30 state closed loop plant of the X-29. This time, two

reference and control inputs were present, rl(t-1), r2 (t-l),

del1 (t-1) and del2 (t-1). As with the SIMO structure, r1 (t-1)

and r2 (t-1) equal del1 (t-1) and del2 (t-i).

MIMO Model Structure

a(t) q(t)

delI C

ri]ti) (f-1) t-2 -30 120t- ) 3 a -7).. -30 c(t-) -30

dell(t-2) -30 d012(t-2) -30 OQ(t-1) -30 q(t-l) -30

Figure 27 MIMO Neural Network Model Structure

As expected, the size of the regression vector has

increased from 90 elements to 120, since the second input past

measurements are added to the vector.

3. Choices of Configurations

In this thesis, three configurations are proposed for

training neural networks to provide the appropriate inputs to
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the X-29 plant in which desired responses are obtained. These

three configurations are: the simulation of the closed-loop

plant, the identification of the inverse plant, and the

simulations of the existing controllers and the plant.

a. Simulation of the Closed-Loop Plant

In this first configuration, the neural network

will emulate the closed-loop architecture of Fig. 28. The

inputs, r, and r 2 , to the 30 states transfer function that

comprises the controller and the plant in series and a

negative feedback loop of gain one, will be the inputs to the

neural network. The outputs of the 30 states transfer

function, a and q, which represent the true system outputs,

will be the desired outputs of the neural network.

Closed-Loop Architecture

Neural Network
Level 1

do 1u alpha

r2

Figure 28 Closed-Loop Architecture
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Each performance, the optimal and the limited,

will be emulated using one MIMO model structure as shown in

Fig. 27.

In order to facilitate the integration of the

configurations to the USERIO program, specific case numbers

are associated with each configuration. That way all three

configurations can use the same USERIO program, SimoMonika.c.

Each case number is stated in a header file. A header file

defines all the variables utilized in the USERIO program: the

case number, the sampling time, the input conditions, the

numerator and the denominator coefficients of the transfer

functions. All the header files, or transfer.h files, used for

this research are shown in Appendix C. The numerator and

denominator coefficients were obtained using the MATLAB file

of Appendix D.

As to the control strategy, the first prototype,

contstrL.nnc, described in Appendix B is employed when only

one structure or network is needed to represent the

configuration. The second control strategy, contstr2.nnc, is

employed when two networks are needed to represent the

configuration. Therefore, the single MIMO network needed to

simulate the closed-loop plant should be trained using the

first control strategy, contstrl.nnc.

Both control strategies use the back-propagation

algorithm with the generalized delta learning rule which

reduces the error between the actual and desired outputs of a
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processing element by modifying the incoming connection

weights.

The table in Appendix E shows the case number, the

model structure, the control strategies, and the header files

associated with each configuration. Notice that this first

configuration contains two cases. Case #1 emulates the optimal

performance model, and case #2 emulates the limited

performance model. Also notice that the model structure has

been divided into two levels. Level 1 and 2 represent the

first and the second network to be trained. Both levels are

usually connected in series and could be trained either one at

a time or both simultaneously depending on the configuration

chosen. In this configuration, only level I applies since only

one network is necessary to represent each of the two cases.

When training neural networks, the stability of

the system being emulated is an important factor to be

considered. Since the transfer functions of the optimal and

the limited-performance models are stable and linear, there

should be no requirements for resetting the networks. The

error should not grow unbounded during the learning process.

b. The Identification of the Inverse Plant

Figure 29a demonstrates the second configuration

where an adaptive architecture is presented to identify the

inverse of a plant (Ref. 14].
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Inverse Plant Architecture

Neural Network
Level I

A~~ 0 ...... .I Z ....
A .4V

alpha
>Plant

417>

Neural Network
Level 2

B

Desired y, U Pa
plant Inverse Pant

output Plant

Figure 29 Inverse Plant Architecture

The single input, u, to the plant will be the

input to the network emulating the plant, and the outputs to

the plant, a and q, which represent the true plant outputs,

will be the desired network plant outputs. Then, the network

plant outputs become inputs to the network emulating the

inverse plant, and the input to the plant, u, becomes the

desired network inverse plant output. Once the plant inverse
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has been found, it can be used for control purposes as shown

in Fig. 29b. The desired plant output, y'=y, is fed into the

inverse plant, and the resulting output is used as input to

the plant. As a result, the plant input produces the desired

plant output.

This control method can be applied to the control

of linear and non-linear systems [Ref. 14:p. 34]. The

configuration differs from the closed-loop architecture of

Fig. 28 in that the input to the inverse plant is the desired

plant output instead of the actual output, and that no

feedback to the controller is required.

In this second configuration, three cases will be

investigated, as shown in Appendix E. The first case examines

the large order transfer function of the 30 states closed-loop

X-29 longitudinal plant whose inverse is stable. The second

case will examine a simpler aircraft, the A-4D, which has a

much smaller order transfer function, but whose inverse is

unstable. The inverse longitudinal plant of the A-4D aircraft

is unstable due to the fact that the plant has-a non-minimum

phase zero at -3.65 whose inverse becomes an unstable pole, as

shown in Fig. 30.
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Figure 30 Poles and Zeros of the A-4D Plant

Finally, the third case examines the X-29 plant

which is a larger order system than the A-4D and which has one

unstable pole at +1.05 and three non-minimum phase zeros

located at -4.5, +2.2 and +9.5, as shown in Fig. 31. As a

consequence of the unstable pole, the X-29 plant is unstable,

and as a consequence of the three non-minimum phase zeros, the

inverse plant is also unstable.
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Figure 31 Poles and Zeros of the X-29 Plant

In all three cases, the model structure is

composed of two levels: level 1 emulates the closed-loop plant

for case #3 or the plant for cases #4 & 5, and level 2

emulates their inverse. The two levels are connected in series

and can be trained simultaneously.

Figure 32 shows the inverse plant neural network

structures developed for this investigation. As anticipated

from Fig. 29, this configuration requires one SIMO neural

network model structure to emulate the plant and one MISO

neural network model structure to emulate the inverse plant.
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Configuration # 2 Identification of the In verse Plant

X-29 Inverse Plant

delI V-2).. -14 del2(t-2) ... -14 r(t 1) .... -14

0at) qQt) X-29 Plant
W- ~SIMO)

del(I-2) -3 -14 O(t- 1) -1 QQI- ) 4

Figure 32 Configuration #2 :Identification of the
Inverse Plant
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The input of the plant, u(t-1), becomes the output

of the inverse plant, and the output of the plant, a(t) and

q(t) , becomes the input of the inverse plant. These two

operations are performed in the USERIO program, and are

demonstrated in the introductory pages of Appendix A.

Since both systems, the X-29 plant and its

inverse, are unstable, the neural networks will have to be

reset many times to prevent the error from growing unbounded

during learning.

c. The Simulations of the Existing Controllers

and the Plant

Figure 33 shows the third configuration

architecture. The inputs to the controller, di and d2, which

are the error between the reference inputs and the plant

Open-Loop Architecture

Neurd Network Neurat Network
Level I Level 2

i u, !! aopha
+dl f : ho

rQ d2 Controller u2 t q

Figure 33 Open-Loop Architecture
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outputs, will be the inputs to the network emulating the

controller. The outputs of the controller, u, and U2 , will be

the desired network controller outputs and the inputs to the

network emulating the plant. The true plant outputs, a and q,

become the desired network plant outputs.

In Fig. 28 the entire closed-loop architecture is

emulated, whereas in this configuration each controller and

plant is simulated separately as an open-loop architecture.

Each performance, the optimal and the limited, has its own

controller but the same plant.

As shown in Appendix E, the configuration has

three cases. Case #6 & #7 emulate the optimal or the limited

performance controller plus the plant, and case #8 makes the

closure of the open-loop system of each case. The closure

implies the connection in series of the controller and the

plant, and the insertion of a negative feedback loop of gain

one from the plant outputs to the controller inputs.

Both controllers are emulated at level 1 and the

plant is emulated at level 2, using MIMO model structures as

shown in Fig. 34. In all three cases both levels can be

trained simultaneously.
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Configuration # 3 Simulation of the Existing
Controllers and the Plant

0(t) L qKt X-29 Plant

del I Q-2) . 14 le120- 2) -14 00t-1) .. -14 10- 1) .... -14

X-29 ControllerUlItM u2(t)

dei(1-2) - -16 def2(t-2) -16 Outl(t-1) -16 OU12(t-1) .... -16

Figure 34 Configuration #3 : Simulation of the
Existing Controllers and the Plant
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Referring to Fig. 34, case #8 is represented by

having the controller outputs, ul(t) and u2(t), becoming the

plant inputs, and the error between the plant outputs, a(t)

and q(t), and the reference inputs, rl(t) and r2(t), becoming

the controller inputs, dl(t-l) and d2(t-1). These operations

are performed in the USERIO program and are demonstrated in

the introductory pages of Appendix E.

The utility of this third configuration, knowing

that effective controllers exist, is that:

The adaptive network may be able to form an effective
control rule on the basis of representation of the system
state that is easier to measure than the representation
required by the existing controller. (Ref. 7:p, 301
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VI. RESULTS AND DISCUSSION

The experimental results of the eight configurations'

cases described in Chapter V will be presented in this

chapter. Time and frequency domain analyses of the neural

network structures of each case will be performed to determine

how close they are to the true system. All configurations

except case #6 will use linear networks. Nonlinearity will be

introduced in case #6, when two hidden layers are added with

a hyperbolic tangent transfer function to the network

emulating the optimal performance controller.

To further investigate the nonlinear network models, an

analysis using the singular value decomposition (SVD) will be

carried out on the controller network of case #6. The optimal

number of elements per hidden layer will be determined.

A. CONFIGURATION #1: SIMULATION OF THE X-29 CLOSED-

LOOP PLANT

1. Case #1 - Optimal Performance X-29 Closed-Loop Plant

The first case emulates the optimal performance X-29

closed-loop plant. The neural network is trained using a

single MIMO model structure fully connected with a linear

activation function. Fully connected means that all the

elements in the feedback and control layer are connected to

all the elements in the output layer. After 20,000 cycles or

300 seconds, the network has learned to respond correctly to
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two random binary inputs of magnitude 1. The random binary

swept square wave is an input signal which excites all the

frequencies of interest.

The frequency responses of the linear neural network

and the frequency responses of the optimal-performance X-29

model to two random binary inputs are displayed with discrete

Bode plots in Fig. 35 through Fig. 38. The frequency responses

of a(t) to input 1 and 2, which are shown in Fig. 35 and 37,

develop near to exact model solutions. As expected, a small

amount of unmodelled noise dynamics can be seen around the

sampling frequency of 50 hertz. In Fig. 37, the network does

not model exactly the low frequency region even after 20,000

epochs. The frequency responses of q(t) to input 1 and 2,

which are shown in Fig. 36 and 38, are very similar to the

ones of a(t). The high frequency regions of both inputs and

the low frequency region of input 2 are very well represented,

whereas the low frequency region of input 1 shows a minor

deviation from the true response, as shown in Fig. 36.

To show how close the network outputs are to the true

X-29 outputs, the RMS prediction error plots for a and q are

given in Fig. 39 and 40. Notice that the vertical scales are

on the order 10-3. As anticipated, the network has learned

very well with RMS errors on the order of 0.00175 for a or

0.175 percent of the maximum output value of one, and on the

order of 0.003 for q. Further training did not improve the

present results.

70



The performance of the neural network in the time

domain was determined by applying a step of one degree for one

second to each input, and by comparing the network's outputs

to the true system, as shown in Fig. 41 through Fig. 44. As

with the frequency domain, the network has learned to model

the true system in the time domain. By comparing the magnitude

of the time responses of Fig. 41 with Fig. 42 , it can be seen

that the X-29 model and the network respond to input 1 with a

positive a while the q response is negligible ( order of

magnitude is 10-1 ). In Fig. 41, the network responds with the

same a rise time of 0.180 seconds, and with the same magnitude

of about 1.08 degree as the true model. In Fig. 42, the

network q response is as fast with a rise time of

approximately .095 seconds. The small oscillations produced by

the neural network q response in Fig. 42 are negligible since

the magnitude of the signal is very low.

By comparing the magnitude of the time responses of

Fig. 43 with Fig. 44, it can be seen that the responses of

input 2 are the reversed responses of input 1, i.e., this

time, the q response is positive while the a response is

negligible with an order of magnitude 10-1.
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2. Case #2 - Limited Performance X-29 Closed-Loop Plant

This second case emulates the limited performance X-29

closed-loop plant. The neural network is trained using also a

single MII.O model structure fully connected with a linear

activation function. The network has learned to respond

correctly after 20,000 cycles or 300 seconds using two random

binary inputs of magnitude 1.

The frequency responses of the linear neural network

and the frequency responses of the limited performance X-29

model to two random binary inputs are displayed with discrete

Bode plots in Fig. 45 through Fig. 48. The frequency responses

of a(t) and q(t) to input 1 and 2, which are shown in Fig. 45

through 48, develop near to exact model solutions. As with the

optimal case #1, the frequency responses of a(t) to input 1

and 2 show unmodelled noise dynamics around the sampling

frequency of 50 hertz, as shown in Fig. 45 and 47. Further

training did not improve the present results. Contrary to the

optimal case #1, the network is better able to model the low

frequencies of both inputs.

RMS prediction error plots for a and q are given in

Fig. 49 and 50. Notice that the vertical scales are on the

order 10-3. As expected, the network has learned very well

with RMS errors on the order of 0.001 for a or 0.1 percent of

the maximum output value of one and on the order of 0.002 for

q.
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The network has also learned to model correctly the

limited performance X-29 closed-loop plant in the time domain.

The X-29 model and the network time responses to input 1 and

2 are given in Fig. 51 through Fig. 54. As with the optimal

performance X-29 of case #I, the limited performance X-29

model and the network responded to input 1 with a positive a

and to input 2 with a semi-positive q, as shown in Fig. 51 and

54. However, the decoupling of a and q is not as pronounced as

in the optimal performance case, i.e., this time, the q(t)

responses in Fig. 52 and the a(t) responses in Fig. 53 are not

negligible.

The step responses of input 2 with an a rise time of

0.8 second, in Fig. 53, and with a q rise time of 0.5 second,

in Fig. 54, indicate that the limited performance X-29 model

and the network are slower to react than the optimal

performance case #1. In the optimal case #1, the rise timc of

a to input 2 was 0.180 second and the rise time of q to input

2 was 0.095. The slower reaction times of the limited

performance case is due to the fact that the control surface

deflections and the control rates of the X-29 airplane were

reduced to conform with the actuators limitations [Ref. 2].

In summary, the first configuration could simulate

case #1, the large order and stable optimal performance X-29

closed-loop plant, and case #2, the large order and stable

limited performance X-29 closed-loop plant, with high

accuracy.
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B. CONFIGURATION #2: IDENTIFICATION OF THE INVERSE PLANT

The second configuration is divided into three cases. Each

case contains two levels of model structure as shown in the

inverse plant architecture of Fig. 29 in Chapter V. The neural

network representation of the inverse plant architecture is

illustrated in Fig. 32. The SIMO neural network structure of

the first level in Fig. 32 simulates the transfer function or

the plant, and the MISO neural network structure of the second

level in Fig. 32 simulates the inverse transfer function or

the inverse plant. Before attempting to test the inverse plant

neural network structures of Fig. 32 with unstable systems

like the A-4D or the X-29 inverse plant, the stable inverse 30

states closed-loop transfer function of the optimal

performance X-29 model will be examined first. Then, the

testing of the small order, unstable inverse plant of the A-4D

will follow and finally the unstable inverse plant of the X-29

will be investigated.

I. Case # 3 - Inverse Closed-Loop Plant of the Optimal
Performance X-29 Model

Since the transfer functions for a(t) and q(t) do not

have any non-minimum phase zeros, the inverse 30 states

closed-loop transfer functions of the optimal-performance case

are stable.

The two networks' structure of Fig. 32 have learned to

model the inverse transfer function within 450,000 epochs or

11,250 seconds. The SIMO network structure of Fig. 32
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representing the 30 states closed-loop transfer function and

the MISO network structure of Fig. 32 representing the inverse

transfer function have been trained simultaneously. As with

the first configuration, a random binary swept square wave of

magnitude 1 was also the input signal at level 1.

After the two networks of Fig. 32 are fully trained,

the random binary step outputs of the inverse transfer

function at level 2 (output 2) should be equal to the random

binary step input of the transfer function at level 1 (input

1). A time history, based on the number of epochs, of the

comparison between the input of the 30 states closed-loop

transfer function and the output of the inverse transfer

function to a random binary input signal is shown in Fig. 55

through Fia. 62. The RMS errors between the two signals,

output 2 and input 1, are also included in the list of

figures.

As indicated in Fig. 55, after 2000 epochs or 500

seconds, the output of the inverse transfer function (output

2) is poorly correlated with the input of the transfer

function (input 1). The RMS error is approximately 1.00 or 100

percent of the maximum output value of one, as shown in Fig.

56. After 150,000 epochs or 3750 sec, output 2 shows some

similarities with input 1, as indicated in Fig. 57. The

network emulating the inverse transfer function at level 2

learned to limit its output to values +1 and to follow the

random binary step inputs of the transfer function at level 1

85



more closely. This time the RMS error, shown in Fig. 58,

decreased from 1.0 to 0.35. After 250,000 epochs or 6250 sec,

output 2 shows even better similarities with input 1, as

demonstrated in Fig. 59. Only the magnitude of the steps need

to be worked on. In this third trial, the RMS error in Fig. 60

is on the order of 0.175. Finally in Fig. 61, after 450,000

epochs or 11,250 sec, the output of the inverse transfer

function (output 2) shows a near to exact solution to the

input of the transfer function (input 1). The lowest RMS error

obtained is on the order of .008 or 0.8 percent of the maximum

output value of one, as shown in Fig. 62.

The discrete Bode plots in Fig. 63 and 64 give the a

and q frequency responses to input 1 of the true optimal

performance X-29 closed-loop transfer function and of network

2, which emulates the inverse transfer function. The frequency

responses of network 1, emulating the transfer function, were

given in the optimal performance case #1.

As explained in Appendix D, the Bode plots are

obtained using the spectral transfer function. The spectral

transfer function is calculated using an output vector and an

input vector. When dealing with the neural network transfer

function of level 1 in Fig. 32, the input vector is composed

of the random binary step input signals at input 1 and the

output vector is composed of the a and q time responses at

output 1. However, when dealing with the neural network

inverse transfer function of level 2 in Fig. 32, the input
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vector is composed of the random binary step responses at

output 2 and the output vector is composed of the a and q

input signals at input 2.

The frequency responses are well modelled across the

spectrum with the exception of a minor deviation in the low

frequency region of the network 2 q response in Fig. 64.

In both time and frequency domain the SIMO and MIMO

neural network structures of Fig. 32 have learned to model the

inverse transfer function of a large order, stable system.
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2. Case # 4 - Inverse Plant of the A-4D Aircraft

The fourth case analyses an open-loop transfer

function, the A-4D fourth order plant, instead of a closed-

loop transfer function, the X-29 30th order system of case #3.

As mentioned in the previous chapter, the A-4D plant is a

small order system whose inverse is unstable due to the fact

that the plant has a non-minimum phase zero.

In this configuration, level 1 of the inverse plant

architecture of Fig. 29 represents the A-4D plant and level 2

represents its inverse. In Fig. 32, the same SIMO and MISO

neural network structures of the X-29 case #3 were used for

this case with the exception of three modifications. The first

modification is that there are four outputs to the A-4D plant

at level 1 (u,a,q, and theta) instead of two for the X-29

plant (a and q) , thus there are four inputs to level 2

instead of two. The second modification is that the network of

level 2 emulates the small and unstable A-4D inverse plant

instead of the large and stable X-29 inverse plant. Finally,

the third modification is that the sampling time for the A-4D

aircraft is 0.1 seconds instead of 0.02 seconds for the X-29

aircraft. The sampling time being 0.1 seconds indicates that

the A-4D longitudinal modes are slower than the X-29 dynamic

modes.

The SIMO and the MISO networks of Fig. 32 have learned

to model the A-4D inverse plant after 25,000 cycles or 450

seconds. The random binary step outputs of the inverse plant
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network 2 (output 2) shows a very near to exact solution to

the random binary step inputs of the plant network 1 (input

1), as shown in Fig. 65. The lowest RMS error obtained is on

the order of 0.00015 or 0.015 percent of the maximum output

value of one, as indicated in Fig. 66. Notice that the

vertical scales are on the order 10-4.

As expected, the speed of the simulation was much

faster for the A-4D model of case #4 than for the X-29 model

of case #3 since the order of the system is seven and a half

times smaller. The order of the system in addition to the

number of inputs and outputs determines the number of elements

in the regression vector. The number of elements in the

regression vector determines the number of connections in the

neural network structure, which in turn determines the speed

of the simulation. The smaller the order of the system, the

smaller the number of connections required in the neural

network, and therefore the faster the simulation.

The discrete Bode plots of Fig. 67 through Fig. 70

give the u, a, q, and theta frequency responses of the A-4D

plant model and of network 1, which emulates the plant. The

discrete Bode plots of Fig. 71 through Fig. 74 give the u, a,

q and theta frequency responses of the A-4D inverse plant

model and of network 2, which emulates the inverse plant.

As with the X-29 model case #3, the spectral transfer

function of the A-4D inverse plant of level 2 has been

calculated using the random binary step responses of output 2
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as the input vector and the u, a, q and theta input signals of

input 2 as the output vector. Both networks, network 1

simulating the A-4D plant and network 2 simulating the A-4D

inverse plant, as shown in Fig. 67 through Fig. 74, have no

difficulties to model the high frequency region. However, even

with further training, the networks are unable to better model

the low frequency region. The same results were obtained, in

respect to the plant, by R. Scott [Ref. 1].

Knowing that the time responses of a(t) and q(t) are

predominantly of high frequency or short period mode, it can

be seen looking from the Bode plots that the emulations of the

A-4D plant and its inverse have been accomplished with high

accuracy.

95



RB [nput comparison after 25000 epochs

15inputl --- output2 -

-0.5

-0.

-1.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

TIME - SEC

Figure 65 RB Input Comparisons after 25K Epochs (case #4)

X1 0, RMS Error after 25000 epochs
4-

3.5
3

c~2.5,

ce 1.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

TIME - SEC

Figure 66 RMS Prediction Error after 25K Epochs (case #4)

96



U 10-2

10-

j 10-3 A-4D

10-4 Network 1---

It) 1 . . ... .. . . .

10-3 10-2 10-t 100 10'

Sea Level Frequency (Hz) Mach=.4

Figure 67 A-4D Plant Model and Network 1 u Frequency
Responses

100

10-t f A-4D--

L Network I -

10 -2

10-3 10-2 10-1 100 10'

Sea Level Frequency (Hz) Mach=.4

Figure 68 A-4D Plant Model and Network 1 a Frequcncy
Responses

97



101

1,.
z

10-1

A-4D -

10" ,"Network 1 -

10-3 10 1o-' 100 10,

Sea Level Frequency (Hz) Mach=.4

Figure 69 A-4D Plant Model and Network 1 q Frequency
Responses

102

101 

.
100' N10.1" " '\

• 10-2 A-4D

10-3I_ Network 1 -
104-

10-3 10-. 10.1 100 101

Sea Level Frequency (Hz) Mach=.4

Figure 70 A-4D Plant Model and Network I theta Frequency
Responses

98



101

10-1 1:

10-2

10-3 A-4D -

10-4 Network 2--

105,-

10-6
10-3 10-2 10-k 10, 10'

Sea Level Frequency (Hz) Mach=.4

Figure 71 A-4D Inverse Plant Model and Network 2 u
Frequency Responses

100

IL

to,' A-4D--

10.1 Network 2

10.2

10-3 1

10-3  10-2 10-1 10o  10'

Sea Level Frequency (Hz) Mach=.4

Figure 72 A-4D Inverse Plant Model and Network 2 a
Frequency Responses

99



10'

100

• 10-1no
A-4D -

102 Network 2 ---
2

10-f 3.103  10-2  1 0"1 100 101

Sea Level Frequency (Hz) Mach=.4

Figure 73 A-4D Inverse Plant Model and Network 2 q
Frequency Responses

102

10L

...-" * 4 . ..10"11

10-2- A-4D --

10-3- Network 2 -

104 .....

to-3 10o2 10 -1 100 l0,

Sea Level Frequency (Hz) Mach=.4

Figure 74 A-4D Inverse Plant Model and Network 2 theta
Frequency Responses

100



3. Case # 5 - Inverse Plant of the X-29 Aircraft

The fifth case also analyses an open-loop transfer

function, the X-29 fourteen order plant. As shown in Fig. 30

and 31 of Chapter V, the A-4D plant has no unstable pole and

one non-minimum phase zero at -3.65, whereas the X-29 plant

has one unstable pole at +1.05 and three non-minimum phase

zeros located at -4.5, +2.2, and +9.5. As a consequence of the

unstable pole, the X-29 plant is unstable. As a consequence of

the size of the X-29 non-minimum phase zeros, +9.5 and -4.5,

versus the A-4D non-minimum phase zero, -3.65, the degree of

instability of the X-29 inverse plant is much higher than the

degree of instability of the A-4D inverse plant.

In the inverse plant architecture of Fig. 29, the X-29

plant without controller, which has not been modelled prior to

this case, is emulated with neural network 1. The X-29 inverse

plant is emulated with neural network 2. As shown in Fig. 29,

only one input to the plant is necessary to investigate this

case study. Both inputs to the plant will be analyzed in the

third configuration when simulating the controllers and the

plant. The same SIMO and MISO neural network structures of the

X-29 model of case #3 are used in addition to the same number

of outputs, 2, and the same sampling time, 0.02 seconds. The

only exceptions are that the neural network of level 1

emulates a smaller, unstable system (X-29 plant) and that the

neural network of level 2 emulates a very unstable system (X-

29 inverse plant).
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After 25,000 epochs or 300 seconds, neural network 1

has learned to model the unstable X-29 plant in the time

domain. The a and q time responses of the X-29 plant model and

of the network 1 to a step of 0.01 degree for one second

applied to input 1 are given in fig. 75 and 76. The RMS errors

are on the order of 0.0005 for a or 5.0 percent of the maximum

output value of one, and on the order of 0.0001 for q. Notice

in both figures the positive exponential departures of both

responses with respect to time. This explains why a step input

of 0.01 degree was chosen over the step input of one degree to

test the system. These exponential responses can be controlled

by limiting the plant outputs to a certain value. Limiting the

plant outputs has two purposes. First, it avoids the plant

output signals to grow exponentially. Second, since the plant

outputs become the inverse plant inputs, it limits the control

inputs of the inverse plant network 2. In this way the effects

of the unstable inverse plant are restrained.

In case #5 of the USERIO program of Appendix A, the

generation of the system or plant outputs are limited to

values between + 1. Every time one of the two plant outputs

reaches ±I, the same output is reset to zero. These resets

occur approximately every 90 epochs or 1.8 seconds, which

introduces noise every 0.5 hertz in the frequency spectrum, as

demonstrated in Fig. 77 and 78. The mean of the noise dynamics

in Fig. 78 follows the true plant response to a certain point,

around 20 hertz. By applying an adequate filter, a proper
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frequency response of the network could be more or less

obtained.

The very unstable inverse plant makes the task of the

inverse plant network 2 more difficult. Even after 500,000

epochs or 8,500 seconds, neural network 2 cannot emulate the

inverse plant, as shown in Fig. 79. The RMS error is on the

order of 0.6 or 60 percent of the maximum output of one.

In summary, the second configuration could simulate

case #3, the large order and stable optimal performance X-29

inverse closed-loop transfer function and case #4, the small

order, unstable A-4D inverse plant, but it could not simulate

case #5, the more unstable X-29 inverse plant. The unstable X-

29 plant was however emulated.
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B. CONFIGURATION #3: SIMULATIONS OF THE X-29 EXISTING
CONTROLLERS AND THE X-29 PLANT

In the simulation of the optimal X-29 closed-loop plant of

case #1 and in the simulation of the limited X-29 closed-loop

plant of case #2, the entire closed-loop architecture of Fig.

28 is emulated, whereas in case #6 and #7 each controller and

plant is simulated separately as the open-loop architecture of

Fig. 33. After both the controller and the plant are emulated,

case #8 will close the open-loop model of both cases by

connecting in series the neural network representing the

controller and the neural network representing the plant, and

by feeding back the errors of the plant network outputs to the

controller network inputs, as illustrated in Fig. 33. In the
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open-loop architecture of Fig. 33, level 1 emulates the X-29

controller and level 2 emulates the X-29 plant. The neural

network representation of Fig. 33 is shown in Fig. 34. The

first MIMO neural network structure of Fig. 34 simulates the

controller and the second MIMO neural network structure of

Fig. 34 simulates the plant. The optimal controller case #6

introduces a nonlinear network model, whereas the limited

controller case #7 utilizes a linear network model. In this

configuration, only the time domain will be analyzed since the

interests are on the time responses of both inputs to case #8,

as described above.

1. Case # 6 - Simulation of the X-29 Optimal Controller
and the X-29 Plant

This case emulates the stable optimal, controller at

level 1 and the plant of the X-29 at level 2. This controller

is stable since the poles and zeros of the transfer functions

of the two inputs are within the unit circle.

The optimal controller is first emulated using a

linear neural network i.e. no hidden layers. The linear neural

network 1 has not learned to model the limited controller even

after 200,000 epochs or 4000 sec, as shown in Fig. 80 through

Fig. 83. The network has difficulties in simulating the

magnitude of the linear ramps of the responses and the

magnitude of the excursions. The best example is shown in Fig.

82. The network could learn the ascent of the first peak, but

it could not make the descent on time. The difficulties in
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simulating the excursions are due to the fact that their rise

times are approaching the sampling time of 0.02 seconds.

Nevertheless, in all four graphs the time responses of the

controller network, network 1, do not show any time shifts.

Since the optimal controller could not be emulated

using a linear network model, nonlinearity was introduced to

see if a nonlinear network model could bring better results.

Therefore, two non-linear networks were investigated in this

case study.

The first nonlinear network involves the addition of

one hidden layer between the control input layer and the

output layer of the controller MIMO network structure of Fig.

34. The hyperbolic tangent function is used as the transfer

function of the hidden layer.

Various numbers of elements in the hidden layer have

been tested. The best results were obtained within 25,000

epochs or 500 seconds using 42 elements.

The time responses of the X-29 linear, optimal

controller and of the first nonlinear controller network to a

step input of one degree for one second are shown in Fig. 84

through Fig. 87. The RMS errors are on the order of 0.0001 for

output 1 or 0.01 percent of the maximum output of one, and

0.00005 for output 2. There are some improvements from the

linear network responses (0 hidden layer) to the nonlinear

network responses (1 hidden layer). Referring to the above

mentioned figures, all the linear ramps of the responses are
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well modelled. However, the peaks' values are not well

represented, as shown in Fig. 86.

The second nonlinear network involves the addition of

two hidden layers between the control input layer and the

output layer of the controller MIMO network structure of Fig.

34. The first hidden layer from the bottom has the same number

of elements as the one of the previous test, i.e., 42. To

determine the optimal number of elements in the second hidden

layer, a SVD analysis was carried out based on the weight

connections of the two hidden layers.

The SVD was calculated for different numbers of

elements (30, 21, 12 and 5) or trials using the weight

matrices, which are composed of the connections weights of the

two layers. The results are given in Fig. 88 through 91. In

all four trials, the networks have been trained using the same

learning rate. In all SVD plots, three lines stand out,

meaning that the optimal number of elements in the second

hidden layer should be three. After some oscillations between

0 and 1500 epochs, the network in all four trials (30, 21, 12,

and 5 elements) stabilizes to constant values. For example, in

Fig. 88 the network comprising a second hidden layer of 30

elements stabilizes around SVD 5, 3.5, and 0.5.

Therefore, forty-two elements in the first hidden

layer and three elements in the second hidden layer should be

sufficient to represent the second nonlinear network model (2

hidden layers).
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The time responses of the X-29 linear, optimal

controller and the second nonlinear network 1 to a step input

of one degree for one second are shown in Fig. 92 through Fig.

95. The RMS errors are on the order of 0.001 for output 1 and

0.0004 for output 2. The responses are very similar to the

first nonlinear network 1 (1 hidden layer). Comparing Fig. 92

with Fig. 84, Fig. 93 with Fig. 85, and Fig. 95 with Fig. 87,

the linear ramps of the two nonlinear networks are well

modelled but the peaks are not well represented. Comparing

Fig. 94 with Fig. 86, both networks responded with high peak

values which are not present in the true optimal controller

responses. As with the first nonlinear network (I hidden

layer), no time shifts are found.

The second part of case #6 involves the simulation of

the X-29 unstable plant at level 2, as shown in Fig. 33. In

the X-29 plant of case #5 only one input to the plant was

necessary to investigate the case, whereas in case #6, case #7

and case #8 both inputs to the plant are necessary. After

40,000 epochs or 800 seconds, network 2 has learned to model

the unstable X-29 plant using a MIMO network structure rather

than a SIMO structure as in the X-29 plant case #5. It took as

long to train the SIMO network structure as to train the MIMO

structure. The q and a time responses of the X-29 plant model

and of neural network 2, which emulates the plant, to a step

of 0.01 degree for one second applied to input 2 are given in

Fig. 96 and 97. The responses to input 1 were given in the X-
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29 plant model of case #5. Once again, both responses have an

exponential departure with respect to time. This time, the

departures are in the opposite direction. As with case #5, the

plant outputs were limited to values + 1 to control the

negative exponential responses.
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2. Case # 7 - Simulation of the X-29 Limited Controller

and the X-29 Plant

This case emulates the stable, limited controller at

level 1 and the plant of the X-29 at level 2, as shown in Fig.

33. The controller is stable because the poles and zeros of

the two inputs are within the unit circle.

Network 1 has learned to model the limited controller

within 20,000 epochs or 400 seconds, as shown in Fig. 98

through 101. The RMS errors are on the order of 0.001 for a

and on the order of 0.0005 for q. Comparing the four figures,

the a and q time responses to input 1 show near to exact

solutions, whereas the a and q time responses to input 2 show

minor deviations from the true limited controller model.

Further training did not better the results of input 2.

Nonlinearity was also introduced to network 1 emulating the

limited controller by adding hidden layers , but no

improvement to the present results were found.

The second part of case #7 involves the simulation of

the X-29 unstable plant at level 2, as shown in Fig. 33. After

40,000 epochs or 800 seconds, network 2 has learned to model

the unstable X-29 plant using the same MIMO network structure

than the optimal case #6. As with case #6, the output values

of the plant were limited to +1 to control the exponential

departures of the responses.
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3. Case #8 - Closure of the Open-Loop Model of the
Optimal Controller of Case #6 and of the
Limited Controller of Case #7

After both the controller and the plant of case #6 and

#7 are emulated, case #8 will close the open-loop model of

both cases by connecting in series the neural network

representing the controller and the neural network

representing the plant, and by feeding back the errors of the

plant network outputs to the controller network inputs, as

illustrated in Fig. 33.

Case #8 is divided in two parts. The first part

examines the closure of the open-loop model of the optimal

controller of case #6, and the second part examines the

closure of the open-loop model of the limited controller of

case #7. These operations are performed in case #8 of the

U:PTO program.

In the first part of case #8, since the X-29 optimal

controller could not be modelled exactly by the linear (0

hidden layer) or the two nonlinear networks (1 and 2 hidden

layers) of case #6, no solution to the closure of the open-

loop model, case #8, was obtained. As mentioned previously,

the peak values could not be well represented in the optimal

controller of case #6 since the excursions' rise times were

too close to the sampling time of 0.02 seconds.

In the second part of case #8, since the linear neural

network 1 of case #7 has learned to model the limited

controller very well, a solution to the closure of the open-

124



loop model was obtained. The limited performance X-29 closed-

loop model and the networks' a and q time responses to input

1 and 2 are given in Fig. 102 through 105. Referring to Fig.

98 through 101 of the limited performance case #7, the minor

deviations of the network time responses from the true model

explain the small time shifts occurring in the closure of the

open-loop model responses, as shown in Fig. 102 through 105.

In summary, the third configuration could simulate

case #7, the X-29 limited controller and the X-29 unstable

plant, and case #8 part II, the closure of the open-loop model

of case #7, with high accuracy. However, the third

configuration could not simulate the optimal controller of

case #6 sufficiently to permit case #8 part I, the closure of

the open-loop model of case #6, to take place.
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VII. CONCLUSIONS AND RECOMMENDATIONS

The neural network structures developed in this thesis

demonstrate the ability of parallel distributed processing in

solving adaptive control problems. Adaptive control theory

implied a combination of a control method and a model

estimation. The control method chosen was the Lyapunov Model

Reference Adaptive Control (MRAC) in which the system was

forced to follow the reference model with zero error. The

controller itself, the weighted one step ahead prediction

controller, involved the weighted sum of the state variables

and the reference input. The model estimation chosen was the

linear least square estimate in which the predicted output

became the weighted sum of the terms in the regression vector.

These weights were adjusted by minimizing the error between

the network and the true X-29 responses. The implementation of

the neural network adaptive control structure was demonstrated

on the longitudinal dynamics of the X-29 fighter aircraft.

Three configurations were proposed to train the neural

network adaptive control structures to provide the appropriate

inputs to the unstable X-29 plant so that desired responses

could be obtained. These configurations were presented in

eight cases. The first configuration representing the closed-

loop architecture of Fig. 28 could simulate, with a linear

network model, the large order and stable optimal and limited
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performance X-29 closed-loop plants with high accuracy. The

networks' time and frequency responses of both performance

cases, case #1 and case #2, developed near to exact model

solutions.

The second configuration representing the inverse plant

architecture of Fig. 29 could simulate in both time and

frequency domain the large order and stable optimal

performance X-29 inverse closed-loop transfer function, case

#3, and the small order, unstable A-4D inverse plant, case #4.

However, the second configuration could not simulate, neither

with a linear nor a nonlinear network model, the more unstable

X-29 inverse plant, case #5.

Since the degree of instability of the X-29 inverse plant

is much higher than the degree of instability of the A-4D

inverse plant, the simulation of the inverse plant of the A-4D

aircraft could be achieved easily compared to the X-29

aircraft, whose inverse plant could not be simulated.

The last configuration representing the open-loop

architecture of Fig. 33 could, with a linear network model,

simulate the X-29 limited controller and the X-29 unstable

plant, case #7, with high precision. In the optimal controller

of case #6, the nonlinear neural networks, which were used to

model the linear system, performed better than the linear

network model.

The use of the SVD analysis was successful in determining

the optimal number of elements in the hidden layers.
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Further studies are needed to develop improved

combinations of linear and nonlinear neural network

structures. In addition, it is important to pursue research on

ways of reducing the computational time by means of selecting

the proper number of elements in the hidden layers or by means

of selecting the proper learning rates.
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APPENDIX A: NEURALWORKS PROFESSIONAL II USERIO PROGRAM

/*******************************************************************************
* Source: simoMonika.c
* Executable: simoMonika
* Version: 3.1
* Date: 30 August 1991
* Author: D. Bertrand
* Project: Neural Networks in Adaptive Control
* Environment: UNIX/SunOS C
* Path: eileen:/fi1669/home/Monika
* Description: This is a prototype for the USERIO program spawned by
* NWORKS Professional II to provide input and output
* vectors for the use of an adaptive control neural network.
* The program operates by running a simulation of the
* longitudinal dynamics of the X-29 and A-4 aircrafts at the
* same speed as sampling time of the network.
* The program can be used for any SIMO and MIMO linear and
* non-linear models.
* This USERIO program has been divided into cases:

* < Level 1 & 2 represent two networks superimposed >

* case (c#) level 1 level 2 control strat. remarks
-

* 1,2 X-29, 30 states contstrl only Level 1
* closed-loop conf. is trained
* (optimal & limited)

* 3 X-29, 30 states X-29 inverse contstrl to train Level 1
* closed-loop conf. closed-loop conf.
* (optimal) contstr2 to train Level 2

* 4 A4 plant Inverse Plant contstrl to train Level 1
* contstr2 to train Level 2

* 5 X-29 Plant Inverse Plant contstrl to train Level 1
* contstr2 to train Level 2
,

* 6,7 X-29 Controllers X-29 Plant contstr2 to train each Level
* (Optimal & Limited) individually

* 8 of " " " " " " " " " to test case 6,7:
* connect in series & feedback

* case 3,4,5

*---------- In these three cases, two major operations are performed
* -connecting the plant and the inverse plant networks in series
* -presenting the desired output to the inverse plant network.
* These operations are accomplished in the case request
* RQLEARNRSLT when identifying the output layer,

* if(IOCOUNT == NUM OUT && IOLAYER == out_lay){
* ... for (i=0; i<num out; i++){
* command2i]=out(i]; ..meaning that alpha(t) and q(t)
* become the input of the inverse
* plant.
* }
* out2[0]-command[o]; ..meaning that r(t-l), the ref.input
* becomes the desired output of the
* inverse plant.
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* 1...

* case 6 & 7
* ---------- In these two cases, both networks are trained separately.
* The connections between the networks will be done in case #8.

* case 8
* In this case, two major operations are performed on case #6 & 7:
* -connecting the controller and the plant networks in series,
* -feeding back to the controller inputs the error between the
* network plant outputs and the reference inputs
* These operations are accomplished in the case request
* RQLEARNRSLT when identifying the plant and the controller layers

* if(IOCOUNT == num out && IOLAYER==outlay){
* for(i=O; i<num out; i++){
* command2[i]=out[i]; ..meaning that the controller outputs
* become the plant inputs.
* }
* 1..°

* if(IOCOUNT == hum out2 && IOLAYER==out2_lay){
* ... for(i-0; i<num-out2; i++){
* command[i]=command[i]-out2[i];..zneaning that the controller
* inputs become the error
* between the plant outputs
* and the reference in puts.
* } °

* } .

* Three different inputs are available:

* Input 1 - Random Binary
* Input 2 - test input I with a pulse of 1 degree for I sec
* Input 3 - test input 2 with a pulse of 1 degree for 1 sec

/* Include the following external modules */

Iinclude <stdio.h>
finclude <math.h>
finclude "userutl.h"
/* #include "transfer3ohp.h" File of parameters for case 1 (optimal) */
/* finclude "transfer3Olim.h" File of parameters for case 2 (limited) *1
/* #include "transferhplinv.h" File of parameters for case 3 (X29)*/
/* #include "transferA4inv.h" File of parameters for case 4 (A4)*/
/* #include "transferl4inv.h" File of parameters for case 5 (X29)*/
1* finclude "transferl6l4hp.h" File of parameters for case 6 (Optimal)*/
#include "transferl6l4hp.h" /* File of parameters for case 7 (Limited)*/

/* Neuralworks calls the USERIO program through the function UsrIO */
int UsrIO()

{

/* Declarations */

extern double ts; /* Sampling time */
extern double iterations; /* number of iterations */
extern double pow(; /* Power function */
extern double fmodo; /* Remainder function */
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extern long random(); /* Random number generator *1
extern char *inputnamef]; /* Names of inputs */
extern double num1(numin][numout][ordl];/* Numerator coefficients */
extern double deni[ordl]; /* Denominator coefficients */
extern double num2[numin2][num out2](ord2];/* Numerator coefficients */
extern double den2[ord2]; /* Denominator coefficients */
extern double alphal; /* Place holder for Command[]*/
extern double alpha2; /* Place holder for Command[]*/
extern double alpha3; /* Place holder for Command[]*/

static int profile={0};
static int redraw,in={0}; /* Redisplay initialization flag */
static double checki; /* Check flag */
static double check2; /* Check flag */
static double count={0.O}; /* Display counter */
static int input; /* Selected input */

static double rmem,rmeml,rmem2; /* Counters for inputs */
static double rcount,rcountl,rcount2; /* Counters for inputs */

int h,i,j,imax; /* Indices */
char bufl90]; /* Display buffer */
char *sp; /* String pointer */

/* Feedback regression vectors */

static double feedback[numfeed]={O.O};

static double feedback2[num_feed2]={O.O);

/*Ref input + regression vectors */

static double command[numcomd]= {O.0};

static double command2[num_comd2]= {0.0};

/* Regression vectors applied to NN */

static double control[numcont]= {O.0};

static double control2(num_cont2]= {O.0};

/* Plant responses to regression vectors ,/

static double out[num_out]={O.O};
static double out2(numout2]={O.O};

/* Definitions */

#define MAXRAND (Ox7fffffffl)
#define rand random

/* Definitions of Level 1 */

Idefine feedbacklay 0
#define command lay 1
#define control-lay 2

/* Idefine hiddeni lay 3 For non-linear models */
/* #define hidden2 lay 4 */

Idef ine outlay 3
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/* Definitions of Level 2 */

#define feedback2 lay 4
#define command2_lay 5
Idefine control2_lay 6
#define out2_lay 7

/* initialization (if necessary) */

IORTNCDE = 0;

switch ( IOREQCDE

/* ---------------------------------------------------------------------

case RQATTENTION:

/* User select input to be used */

Again3:
sprintf( buf,"\nEnter Desired Input Type (I. %s, 2. %s, 3. %s, 4. %s"

inputname[l],input_name[2],inputname[3]);
PutStr( buf );
sp=GetStr();
sscanf( sp, "%ld", &input);
if( input >3. 11 input<l. ){

sprintf( buf, "\n%s",inputname[0] );
PutStr( buf );
for(i=0;i<1000;i++)4
)
goto Again3;I

/* Display selections */

sprintf( buf,"\nInput: %s selected",
inputname[input]);

PutStr( buf );
if(input==2. I input==3.){

PutStr("\nEnsure LR is set to zero for test");
I
in=l;
break;

case RQREWIND:

/* Occurs at the start of a "learn all".
* Rewind any input files to the beginning. *1

count=0.0;
break;

case RQ LSTART:

/* Learn start; occurs once at the start */
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/* initialize input if not already done so ~

if(in==0) {
input=l;
in=i;

/* check if user wishes to redisplay after every plot reaches the end *

PutStr("\nHow often do you wish to redraw the screen (0 for never)?");
sp=GetStro;
sscanf( sp, "1%ld", &redraw);

/* start random binary or composite in time sequence *

if (nun in==l){
if(Tlnput==1) {

rcount=0 .0;
rmem=rand() % 4;
comm~and(]=pow(-1.0,rmem);

if(num in==2){
if(input==1) {

rcountl=0. 0;
rcount2=0.0;
rmeml=rand() 4;
rmem2=rand() 4;
command[COJ=pow (-1. 0, rmemI);
command[1)=pow(-1.0,rmem2);
if(c==6 11C=7)

command2[0]=pow(-.0,rieml);
cormand2(1J=pow(-l.0,rmem2);

1* start test with a pulse of I degree for 1 sec ~

if (nun in==1){
if(TInput==2) {

rcount=50.0;
connand[oJ=alphal;

if(num in==2){
if(input==2) {

rcountl=50.0;
rcount2=50. 0;
command(0J=alphal;
command[ 13=0. 0;
if(c==6 11c=7)

comnand2 [0]=alpha3;
command2( 1]=0. 0;
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if(input==3) {

rcountl=50.0;
rcount2=5O.0;
command( lJ=alphal;
command[O]=0.0;
if(c==611c=)

commnand2 [1)=alpha3;
conuand2[0]=0.0;

/* display the starting conditions *

sprintf( buf, "\nCycles: %f Input: %s",
count, input_name~inputJ);
PutStr( buf )
break;

/*-----------------------------------------------------------------------

case RQ_LEARNIN:

/* The input values should be stored in IODATA array *

1* input feedback layers to the network */

if( IOLAYER==feedback lay && IOCOUNT==num feed )
for( i=O; i<nurnfeed;i++ )f

IODATA(i]=feedback[i];

if( IOLAYER==feedback2_lay && IOCOUNT==num_feed2 )
for( i=0; i<num feed2;i++ )f

IODATA[i]=feedback2[i];

1* input commniand layers to the network *

if( IOLAYER==conxnand lay && IOCOUNT==num cond){
for(i=o;inum comd;i++) {

IODATA[ i]=comniand[iJ;

if( IOLAYER==command2_lay && IOCOUNT==num_comnd2){
for(i=0;i<num comd2;i++) {

IODATK[ iJ-comnmand2(i];

break;
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case RQWRSTEP:

/* output control layer from network *

break;

/*------------------------------------------------------------------

case RQLEARNOUT:

1* present plant or model responses to the network *

if( IOLAYER==out Ilay && IOCOUNT==num-out){
for(i=O;i<numout;i++) {
IODATA[ i)=out[ iJ;

if( IOLAYER==out2 lay && IOCOUNT==num-out2)f
for(i=O;i~nur out2;i++) {
IODATA[iJ=out2([iJ;

break;

/* --------------------------------------------------------------------

case RQLE-ARNRSLT:

(* control outputs from network &

if( IOLAYER==control lay &&IOCOUNT==num in){

if(num in=='1){
for(i=o;i'num cont;i++){

control [TJ=cominand Li);

control(O]=IODATA(O);

if(num_in==2){
imax=ordl;
if (numout==1){

imax=regvecl;

for (i=o;i<imax;i++)f
ControlLi ]=commandf j+lumhout-I);

for (i=2;icnum in+l;i++){
imax=ordl~i;
if (num out==i){

imax=reg-veci;

if (num out>i-I){
fogr (j-ord1*(i-l)+1;J<imax;j++)f

control~j ]=commandfj~num out-i];

for (i=O;i<num in;i4+){
controltordl*iT=IODATA(iJ.
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/* generate system and model response to this control input *

for(i=o;i<numout;i++) {
out(i]=O.OO;
for(h=o;h<nui in;h++) {

for(j=O;j<ordl;j++) {
Out(iJ=out~iJ+numl~h]EiI[jJ*(control(ordl*h+j]);

for(j=O;j<ordl;j++) {
out(i)=out[i)+denl[j]*(control(ordl*(i+numil+j.);

if(IOCOUNT==num-out && IOLAYER=-Out_lay){

/* shift the regression vectors *

if(num in==1){
fo6r(i=O;i<numfeed;i++) {

feedback[i]=control~ij;

for (i=O;i<num_feed;i++){
comrnandti+l]=controlti];

if (nun in>l){
f~r (i=l;i<num_out+l;i++){

imax=ordl*i-1;
if (numnout==i){

imax=regvecl-l;

if (nun outi-l){
'for (j=ordl*(i-1);j<imax;j++)f

feedback(j-(i-1) ]=control[j];
command[j+numout-(i-l) ]=control[j];

/* generate a new random binary input *

if (nun_in==l){
if(input==1) {

rcount++;
connandE O]=alphal;
if(fmod(count,2.O)<1.0) {

rmem=rand() % 4;
command[OJ=pow(-1.o,rmem);
alphal=command(O];
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if(num~in==2) {
if(input==l)(

rcountl++;
comrnand(0]=alphal;
command[ 1 >alpha2;
if(fxnod(count,2.O)<1.O) {

rmeml=rand() 4;
rmern2=rand() 4;

command[0J=pow(-1.Ormeml);
command(1]=pow(-l.O,riem2);

alphal=cornmand(0];
alpha2=comiand~l];

1* generate a new test (pulse of 1 degree for 1 sec) input *

if(num in==l){
if(input==2) {

rcount -- ;
cominand[0J=alphal;
rmem=2 00;
if(rcount<=0.0) {

rmem--;
command[ D)=O. 0;
if(rmem<=O.O) {

rnount=50.0;
alphal1.0;

if(nun in==2){
if(lnput==2)f

rcountl-;
command[OII=alphal;
commzand[1)=O.0;
rnieml=2 00;
if(rcountl<=0.0) {

rmeml --;
command [ 0] '. 0;
if(rmeml<=0.0)

rcountl=50. 0;
alphal=1 .0;

if(input==3) {
rcounti -- ;
command(lJ=alphal;
command[0]=0.0;
rmeml=2 00;
if(rcountl<=0.0) {

rmeml--;
command(lj=0.0;
if(rmeml<=0.0) {

rcountl 50.0;
alphal=1 . ;
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/* load the regressors with system and model responses *

for(i=o;i<num out;i*+)f
command(ordl*(j+num in)]=-out[i];
feedback (ordl* (i+nujmin) -numinJ=-outfi);

/* load the input of Level I to the output of Level 2 *

if(c==3 11c==4 11 c==5){
out2 (0]=command[0J;

I

/* load the outputs of Level 1 to the inputs of Level 2 *

if(c==3 11c==4 11 C==5 11c==8
for(i=O;i<num out;i++){

colnmand2[i]=out[iJ;

/* increment the counter and update displays as necessary *

count++;
checkl=fmod(count, 1000.);

if(checkl1l.O) {
sprintf( buf, "\nCycles: %f Input: %s",

count, input namef input]);
PutStr( buf );

if(c==5 11c==611c=)
if(input==1) {

for(i=0;i<num out;i++)f
if(out[i]>l.0 11 out(ipcz-1.0){

for (i=0;i<num_feed;i++){
feedback[ i]=0. 0;
cominand( i+num in]=0. 0;

if (redraw -=0){

if(fmod(count, (double)redraw)<1.o){
IORTNCDE=1;
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/~ONLY FOR CASES 3 TO 8 *

if( IOLAYER==control2_lay && IOCOUNT==num-in2 ){

imax=ord2;
if (num-in2==1){

imax=req vec2;

for (Iwo;i<imax;i++)f
control2 Ci =command2 (i+num i n2-l];

for (i=2;i<num_in2+1;is+){
imax=ord2*i;
if (num in2==i) {

iiax=regvec2;

if (num in2>i-I){
for (j~ord2*(i-l)+l;j<jmax;j++)f

control2 [ 3=command2tj+numjin2-i);

for (i=0;i<nun in2;i+.+){
control2[ord2*ITp=IODATA[i];

/* generate system and model response to this control2 inputs *
if(c==6 11 c=?1 H =

for(i=o;i<numout2;i++) {
out2 (iJ=0. 00;
for'(b=O;h~znum ini;h++) {

for(j=O;j<-ord2;j+4) {
out2[iJ=out2[i]+num2[h](iJ[j]*(control2(ord2*h+jj);

for(j=0;j<ord2;j++) {
out2(i]=out2(i]+den2tj]*(Control2[ord2*(i+2)+j]);

if(IOC0TTNT==num out2 && IOLAYER==out2-lay){

/* shift the regression vectors */

for (i=l;i<num_out+l;i++){
imax=ord2* i-1;
if (num out==i){

imax=regvec2-1;

if (num out>i-1){
'for (j=ord2*(i-1);J<imax;j++){

feedback2[j-(i-l)3)control2[j];
comynand2[j+num out-(i-1) ]=control2(j];
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/* generate a new random binary input *

if(C==6 11 C==7){
if(input==l) {

rcount2++;
command? (0]=alphal;
command2 [1] =alpha2;
if (fmod (count,2.0) <1.0)

rmeml=rand() 4;
rmem2=rand() 4;

command2[0J=pow(-l.0,rmeml);
command2(lJ=pow(-l.0,rmem2);

alpha l=command2 [01;
alpha2=command2 [1];

/* generate a new test (pulse of 1 degree for 1 sec) input *

if(c==6 11c=7)
if(input==2) {

rcount2 -- ;

command? (OJ=alpha3;
command2tl]=0.0;
rmen2=2 00;
if(rcount2z=0.0) {

rmem2--;
command2[0)=0.0;
if (rmem2<=O.0)(

rcount2=50.0;
alpha3=0. 001;

if(input==3) {
rcount2 -- ;
command? [1 J=alpha3;
command? [01=0.0;
rmem2=2 00;
if (rcount2<= .0) {

rmem2--;
command? [1]=0. 0;
if(rmem2<=0.0) {

rcount2=50.0;
alpha3=0. 001;

/* load the regressors with system and model responses *

if(c==3 1 c==4 1 -)
command? (ordl*num out]=-out2 [0J;
feedback2[ (ordl-l)*num_out]=-out2[0];

if(c==6 1j c==7 11c=)
for(i=0;i<numout2;i++) {

command2[ord2*(i+2) ]=-out2[iJ;

144



/* calculate the error value going into the controller (feedback loop) *

if(c==8) {
for (i=O;i<num out2;i++){

command(iJ=-command[i]-out2[iJ;

1* increment the counter and update displays as necessary *

if(c==6 Hl c==7){
if(input==l) {

for(i=O;i~num -out2;i++) {
if(out2[iJ>1.O 11 out2(iJ<-1.O){

for (i=O;i<num_feed2;i++){
feedback2(i]=O.O;
cominand2 (i+num in]=O. 0;

break;

/ * ---- -- -- -- --- -- -- -- -- -- --- -- -- -- -- -- --- -- -- -- -- --

break;

case RQLEND:

break;

case RQRTR:

break;
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case RQRCLTST:

break;

case RQREND:

/* end recall , display current status *

sprintf( buf, "\nCycles: %f Input: %s",
count, input name[input]);
PutStr( buf )

break;

case RQTERM:

/* terminate userio 1

sprintf( buf, "\nCycles: %f",
count);
PutStr( buf )

break;

return;
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APPENDIX B: NEURALWORKS PROFESSIONAL II CONTROL STRATEGIES FILES

csv2. 1
!file format is Control Strategy Version 2.1

Source: contstrl.nnc
Executable: neuralworks professional II
Version: 2

1 Date: 30 Aug 1991
! Author: D. J. Collins
! Co-Author D. J. Bertrand
! Project: Neural Networks in Adaptive Control
! Environment: UNIX/SunOS/Neuralworks Control Strategy
! Path: eileen:/fi1669/home/monika
! Description: This is a prototype control strategy for use with

the simomonika USERIO program.
This strategy uses a proprietary language which is covered

! in some detail in the Neuralworks Professional II manual.
! This control strategy applies only for cases 1, 2, 3, 4 & 5

which require Level 1 to be trained first.
Each network must use the back-propagation learning concept, and

! possesses at least an input or feedback layer, a control or
command layer, and an output layer.

Revisions: Handles all hidden layers

!MASK label op-code operands comment
L saRisa trace aux3 ! set trace option to aux3
Li aRisa cset recall,0 ! recall count

Get inputs for Level I (learn and recall)

L saRisa Iset in I set feedback layer or input
L-saR io rnin get feedback vector learn
L RTs io read ! get feedback vector recall
L saRisa iset cur,l ! set command layer
L-saR io Irnin get command vector learn
L RT-a io read ! get command vector recall

Start forward pass to but not including output layer

L saRisa lset in ! set feedback layer or input
L-saR @loopi math sum lInoiseltran output e=01fire ! fire Oth layer learn
L- RTs math sum rnoise tran output e=0 ! fire Oth layer recall
L saRisa Iset cur,1 1 set next layer learn & recall
LsaRisa lcmp in,+3 at output layer ?
L-saRisa blt @loopl ! loop till done

Transfer control vector to userio and get desired output

L saRisa lset in,+2 ! set control layer learn and recall
L-saR io lrnrslt I sent control input learn
L Ris- io write ! sent control input recall
L saRisa lset in,+3 ! set output layer learn and recall
L-saR io lrnout ! get output layer desired learn
L R's io rcltst ! get output layer desired recall
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Compute final outputs at output layer

L saR math sum Inoise ce=e tran output e-=wlfirele*=eflswaplfireL- Risa math sum inoise ce=e tranioutputle-=w swap !recall
L Risa eos

write results to userio

L saR io lrnrslt ! sent output learn
L R s-a io write ! sent output recall

learn cycle back propagate error (note at output layer)

L saR math i=ele=ce ! put desire value in sum field
L-saR_ @lloop math ce=eje*=fIjbackpjlearnjfire ! bkp/learn 3rd
L-saR lset cur,-I ! previous layer
LsaR lcmp in ! at input layer?
L saR bgt @lloop ! loop till done
LaRis trace 0 ! turn off any trace function

! Note, when viewing an output node, output contains the network result,
! sum contains the desired result, and ce contains the error.
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csv2 .1
Ifile format is Control Strategy Version 2.1

source: contstr2.nnc
! Executable: neuralworks professional II

Version: 2
1 Date: 30 Aug 1991
! Author: D. J. Bertrand
I Project: Neural Networks in Adaptive Control
I Environment: UNIX/SunOS/Neuralworks Control Strategy
I Path: eileen:/fi1669/home/Monika
! Description: This is a prototype control strategy for use with

SimoMonika.c, the USERIO program.
This strategy uses a proprietary language which is covered
in some detail in the Neuralworks Professional II manual.
This program is a continuity to contstral.nnc.

For cases 3,4 & 5
After Level I has been trained with contstral,
Level 2 is then trained with this control strategy using
the inputs and outputs of Level I as references.

For cases 6 & 7
Contstral is not necessary, since both Level 1 & 2 can
be emulated simultaneously with contstra2.

For case 8
No training takes place. Make sure LR is set
to zero before using contstra2.

!MASK label op-code operands comment
L saRisa trace aux3 i set trace option to aux3
LIaRisa cset recallO recall count

! Get inputs of Level 1 (learn and recall)

L saRisa lset in . set feedback layer or input
L-saR io irnin get feedback vector learn
L Risa io read ! get feedback vector recall
L saRisa lset cur,l set command layer
L-saR io lrnin ! get command vector learn
L R-i io read I get command vector recallI

Start forward pass to but not including output layer

L saRisa iset in I set feedback layer or input
LsaR @loopl math sumlinoiseltran output e=01fire !fire Oth layer learn
L- R- math sum rnoise tran output e=0 ! fire Oth layer recall
L saRisa lset cur,i ! set next layer learn & recall
LsaRisa lcmp in,+3 ! at output layer ?
L-saRisa blt @loopl I loop till doneI

Transfer control vector to userio and get desired output

L saRisa lset in,*2 ! set control layer learn and recall
L-saR io lrnrslt ! sent control input learn
L7__ Rs io write ! sent control input recall
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L saRisa lset in,+3 set output layer learn and recall
LsaR io irnout get output layer desired learn
L R-s io rcltst get output layer desired recall

Compute final outputs at output layer

L saR math sum Inoiselce=e tran output e-=w firele*=eflswaplfire
L7 Risa math sum lnoiselce=eltranloutputle-=w swap !recall
L Risa eos

write results to userio

L saR io Irnrslt ! sent plant output learn
L7 R-isa io write ! sent plant output recall

learn cycle back propagate error (located at output layer)

L saR math i=ele=ce put desire value in sum field
LsaR__ @loop2 math ce=eje*=f'Ibackpjlearnjfire ! bkp/learn 3rd
L-saR__ Iset cur,-1 previous layer
L-saR lcmp in I at input layer?
L-saR_ bgt @loop2 loop till done

! note that the error does not need to be backpropagated if using cases 2 & 3.
! It has already been trained using estimatl.nnc.

! Get inputs of Level 2 (learn and recall)

L saRisa lset in,+4 ! set feedback2 layer or input
L-saR io Irnin get feedback2 vector learn
L R-is io read ! get feedback2 vector recall
L saRisa iset cur,l ! set command2 layer
LsaR io rnin get command2 vector learn
L RT-s io read get command2 vector recall

! Start forward pass to but not including output2 layer

L saRisa lset 1n,+4 set feedback2 layer or input
LsaR @loop3 math sum inoiseltran output e=Olfire !fire Oth layer learn
L7 Risa math sum rnoise tran output e=0 ! fire Oth layer recall
L saRisa lset cur,1 ! set next layer learn & recall
LsaRisa lcmp in,+7 I at output2 layer ?
LsaRisa blt @loop3 I loop till done

! Transfer control2 vector to userio and get desired output2

L saRisa iset in,+6 ! set control2 layer learn and recall
L-saR io lrnrslt ! sent control2 input learn
L R'-sa io write ! sent control2 input recall
L saRisa lset in,+7 ! set output2 layer learn and recall
LsaR io lrnout ! get output2 layer desired learn
L R'sa io rcltst ! get output2 layer desired recall

Compute final outputs at output2 layer

L saR math sum lnoiselce=e tran outputle-=wlfirele*=eflswaplfire
L- Risa math sum lnoise ce=e tran output e-=w swap Irecall
L Risa eos
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I
write results to userio

L saR io lrnrslt sent output2 learnL R-i io write ! sent output2 recall

! learn cycle back propagate error (note at output2 layer)

L saR math i=ele=ce ! put desire value in sum fieldL-saR @loop4 math ce=eje*=f'Ibackpjlearnjfire ! bkp/learn 3rdI-saR- iset cur, -1 previous layerLsa-- cmp in,+4 at input2 layer?
LsaR bgt @loop4 loop till done
L__aR.-a trace 0 I turn off any trace function

Note, when viewing an output node, output contains the network result,I sum contains the desired result, and ce contains the error.
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APPENDIX C: NEURALWORKS PROFESSIONAL II HEADER FILES

* 11 april 1991 *
* transfer3ohp.txt (Optimal case ) *
* Header file for transfer function variables *
* Sampling time 0.02 sec *
* CAPT D. Bertrand *

********************************* ********* ******************

/* Define the case # */

Idefine c 1 /* X-29, 30 states closed-loop conf. *1

/* Define the variables */

/* Level 1 */
#define ordl 30 /* order of the X-29 closed-loop conf. *1
#define numin 2 /* number of inputs to the X-29 closed-loop conf.*/
#define reg vecl 120 /* regression vector =ord*(num_in+numout) */
#define num feed 118 /* feedback layer =reg vec-numnin */
Idefine num-comd 120 /* command layer = regvec */
#define hum cont 120 /* control layer = reg vec *1
#define nun-out 2 /* output layer = num_out */

/* Level 2 ( not required ) */
#define ord2 1 /* order of the X-29 inverse closed-loop conf.*/
#define num in2 1 /* number of inputs to the X-29 inverse closed-loop*/
#define reg vec2 1 /* regression vector =ord*(num_in+num out) *1
#define numfeed2 1 /* feedback2 layer = reg_vec-num_out */
#define numcomd2 I /* command2 layer= reg_vec */
#define numcont2 1 1* control2 layer = reg vec */
#define numout2 1 /* output2 layer = num_in */

/* Declarations */

static double ts={0.02};
static double alphal={l.0;
static double alpha2={0.01};
static double alpha3={0.001);

static char *inputname[]={"Illegal Input","Random Binary",
"A Pulse input of 1 degree for 1 sec (input 1)","(input 2)"};

static char *state nane[)={"1Illegal State","u(t)","alpha(t)",

" q(t)", 
"theta(t)" 

;

/* Numerator coefficients of the X-29 closed-loop conf. */
/* Order is al-a30 & ql-q30 for the indices */

static double numl12][2][30J=
{ 7.217941790123916e-03,

4.136127382910360e-02,
-4.669768974859352e-01,
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1.740 9 15378910785e+oo,
-3.860 9 7 2079490637e+o
5. 9 1 0 0 2 6001863514e+00,

-6.60 3 623724905617e+oo,
5. 4 6 1815191735525e+oo,

-3.270158 9 87514236e+00,
1-2 7 6 6 67299594394e+0oo

-1.520754074600887e-01,
-2- 0 5 11 59049792766e-01,
1.945345556135285e-01

-1.056009840779120e-01
4.305024816802305e-02,

-1. 4 2 1 5 6 4425160682e-02,
3.890465813729260e-03,

-8.7 5 3 8 7 8576499303e-04,
1.567504967623089e-04,

-2.108457015082093e-051
1. 9 2 5 4 19 095923840e-06,

-9 .2 76 539501321390e-08
-7. 8 2 2 692189116382e-10
3. 6 06 6 58455830145e-1o,

-1.7 3 1 2 8 2 437642258e-11
2.82 8 83 0223439087e-13

-1.035513245405491e-15
3. 0 8 4 6 2 5475376078e-17,
6. 0 8 7 6 2 9 110463293e-20,
2. 1 8 8 7 2 4 968031335e-33,
3.030279064248020e-02

-2.17 6 6 17 363311379e-o1,
7. 1 9 9 4 1 8 5 22371559e-o1,

-1. 4 4 5 887468831245e+oo
1.9 3 7 2 3 2 438753256e+00,

-1.7 4 4 010585139847e+oo
9.0 4 6 19 1030770956e-ol
7. 5 2 09 8 3838907114e-02,

-6- 9 4 2 919440655828e-o1
8.1801087 28891611e-o1

-6. 2 9 6 3 5 1231172181e-o1
3.71 5 2 3 4366137601e-o1,

-1. 7 7 9 5 7 2 331145785e-01,
7.11 3 14 3215820728e-02

-2.40 3 3 7 8 264476541e-02,
6. 8 7 9 19 8 166074046e-03

-1.65 6 190902514149e-03
3.30 2644120224971e-04

-5.332055003518747e-05
6.7 64447617547078e-06,

-6. 4 9 6 114358148548e-07
4-50 2 381161607562e-08

-2- 0 9 9 0 3 3629117875e-09
5.705913270502097e-ii,

-4. 9 3 6 1 9 6 094124739e-13
-1. 4 6 3 1 6 8 035258393e-14
3. 3 3 9 92 1369161159e-16,

-1.65 2 969295184519e-18
4.511432668157739e-20
1. 6 18 49 7006367023e-31
2.913303838345982e-03,

-1. 8 5 9 5 8 7162627463e-03,
-7. 2 5 7 3 1 9 744519464e-02,
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3.655964413534321e-01,
-9.606361329579727e-01,
1.693827322488687e+00,
-2.182839335964559e+00,
2.128533975768278e+00,
-1.587246649450236e+00,
8.986946032316325e-01,

-3.730810625463050e-01,
9.989694996497533e-02,

-4.970326697264049e-03,
-1.160762684818817e-02,
7.783152259177362e-03,
-3.255752858643685e-03,
1.045405054255093e-03,

-2.683453425099142e-04
5.432548388124316e-05,

-8.285696168148078e-06,
8.778748619323248e-07,
-5.498966408340436e-08,
1.047635489968687e-09,
9.124468024653338e-11,
-5.975619276082550e-12,
1.069871022603523e-13,

-3.507375971593066e-16,
1.211440893663403e-17,
2.074970670899496e-20,
1.49642851424892le-33
4.943906040469592e-02,
-2.486659847197288e-01,
4.696527405284456e-01,
-1.710384843461270e-01,
-1.086534623251680e+00,
2.936298628985867e+00,

-4.355953352923223eO00,
4.581740987760242e+00,

-3.705662442825542e+00,
2.399924940838602e+00,
-1.276938538460257e+00,
5.681969684923196e-01,

-2.137895540465093e-01,
6.824380985107714e-02,
-1.836615026668542e-02,
4.094699081625131e-03,
-7.327299957345171e-04,
9.966153548749378e-05,
-9.192870090060862e-06,
3.638980355619663e-07
3.811403848043370e-08,

-8.162814699140338e-09,
7.514384787162991e-10,

-4.201909270278608e-11,
1.427936059062508e-12,

-2.689202646566666e-14,
2.645984174551336e-16,

-2.499266947496521e-18,
1.613683912162787e-20
1.105945879965577e-31
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/* Denominator coefficients */

static double denl[30]=
{ -8.702573379180253e+00,

3.624185054971434e+01,
-9.637476611139380e+01,
1.840944567247478e+02,

-2.691932874966105e+02,
3.133425587022512e+02,

-2.979853544537900e+02,
2.358162965122712e+02,

-1.574535322515088e+02,
8.967590202531342e+01,
-4.395124648498849e+01,

1.866251064997256e+01,
-6.894463299309602e+00
2.218004644230438e+00,

-6.19473602465194le-01,
1.490902392482576e-01,

-3.055808663119203e-02,
5.250501120595874e-03,

-7.417915268847094e-04,
8.426982161281500e-05,

-7.509227926740248e-06,
5.105441468225222e-07,

-2.559001820930592e-08,
8.981854293991370e-10,

-2.024422876299269e-11,
2.556068754189784e-13,
-1.858391083686945e-15,
2.070784849258401e-17,

-5.231469022776601e-21,
-8.203828579087643e-38

/* Does not apply for the case I */

static double num2[[11)l]1)= {1.01;

static double den2(l]={l.0);

155



/ 9**** * **********9****99 **** ** ****9*******9********** **9***

* 11 april 1991 *
* transfer3Olim.txt (Limited case ) *
* Header file for transfer function variables *
* Sampling time 0.02 sec *
* CAPT D. Bertrand *

***************9*************9****** *****9*9************ **

/* Define the case 1 *1

Idefine c 2 /* X-29, 30 states closed-loop conf. (limited case)*/

/* Define the variables */

/* Level 1 */
#define ordi 30 /* order of the X-29 closed-loop conf. */
Idefine numin 2 /* number of inputs to the X-29 closed-loop conf.*/
Idefine reg vecl 120 /* regression vector =ord*(num in+num_out) */
#define num feed 118 /* feedback layer =reg vec-numin */
Idefine numcomd 120 /* command layer = reg-vec */
#define num cont 120 /* control layer = reg vec *1
#define numout 2 /* output layer = numout */

/* Level 2 not required ) */
Idefine ord2 1 /* order of the X-29 inverse closed-loop conf.*/
#define numin2 I /* number of inputs to the X-29 inverse closed-loop*/
#define reg vec2 1 /* regression vector =ord*(num in+num out) */
#define num feed2 1 /* feedback2 layer = regvec-num out */
#define num-comd2 1 /* command2 layer= regvec 9/

#define num-cont2 1 /* control2 layer = regvec 9/

Idefine numout2 1 /* output2 layer = numin */

/* Declarations */

static double ts={0.02};
static double alphal={1.o};
static double alpha2={0.01);
static double alpha3={0.001};

static char *inputname[]={"Illegal Input","Random Binary",
"A Pulse input of I degree for 1 sec (input 1)","(input 2)");

static char *state name[]={"Illegal State","u(t)","alpha(t)",
"q(t)", "theta(t)"};

/* Numerator coefficients of the X-29 closed-loop conf. */
/* Order is al-a30 & ql-q30 for the indices 9/

static double numl[2][2]30]=
{ 2.844220109210482e-05,

-4.636343490460604e-05,
-4.816337071247290e-04,
2.541965352179432e-03,
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-6. 2 2 13 44 563186904e-03,
9. 7 0 0 8 3 69 06404220e-03,

-1.05 6 9 37401995128e-02,
8.1 2 8 0 9 8 827000940e-03,

-3.979045497317202e-03,
4. 5 5 0 147278905570e-04,
1. 2 3 3 2 49102824630e-03,

-1. 3 8 4 4 03827046299e-03,
9 .04 0 024800270885e-04,

-4. 3 2 4 7 3 9 8 39844938e-04,
1. 6 15 8 71994147255e-04,

-4. 8 0 4 3 16744344561e-05,
1.1 2 2 8 24825117164e-05,

-1 .9 4 3 7 5 1086891377e-06,
2.022 6 2 9 447609448e-07,
3. 4 0 8 9 3 9 4 95269658e-09,

-5 .7 04020784890775e-09,
1.058 982467133109e-09,

-9. 7 0 0 2 69350498115e-11,
3. 9 5 4 9 9 35 50955955e-12,
1. 5 5 6 2 57997037185e-14,

-6.31 6 6 55529366355e-15
1. 4 3 4 3 41976227709e-16,

-5. 2 8 48 11098416118e-19,
1. 6 9 4 6 63132378100e-20,
2.280 4 3 1 4 60264726e-26,
1.3028 6 7 2 54258544e-03

-7. 3 8 2 8 51430506321e-03,
1. 1 3 3 2 43132534290e-02
2. 6 2 4 4 3 6 184066781e-02,

-1. 5 9 8 7 54578815260e-o1,
3.871 5 27027772572e-01,

-6.1121 6 9 4 41003061e-01,
7.1 0 2 9 48491758525e-ol,

-6. 4 2 0 17 9 001261204e-o1,
4. 6 5 4 7 73480224321e-01,

-2. 7 5 6 5 85281389334e-o1
1. 3 4 5 9 00453700608e-o1,

-5. 4 2 2 2 95001227440e-02
1. 7 8 32 62619678538e-02,

-4. 6 3 1 6 8 0402436444e-03
8.6170 2 9016368960e-04,

-6.950853850051786e-05,
-2. 2 4 7 015885420423e-05,
1.205464699656489e-05,

-3.2185 9 0 077396812e-06,
5.91 3 5 39012463971e-07,

-7. 8 4 4 5 77461731442e-08,
7. 4 2 1834511632813e-09,

-4.815724560938900e-o
2.020594289801237e-i,

-5.01 5 7 98784974100e-13,
6. 4 3 8 9 2 6158022875e-15,

-4. 5 9 5 4 73491280940e-17,
5.50 2 3 3 8148222649e-19,
1. 7 14 4 67588949488e-24
3.41 4 7 7 1400578331e-05,

-1.11 4 9 3 0 4 2 8087746e-04,
-1. 8 4 1134245808007e-04,
1. 8 5 4 6 8 74 59513116e-03,
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-5.586092871340043e-03,
1.064962476698383e-02,

-1.499862810806007e-02,
1.648927429573632e-02,

-1.436138159283473e-02,
9.866396810934930e-03,

-5.258203378502913e-03,
2.092821291967084e-03,
-5.565361172443772e-04,
4.807825585118053e-05,
4.066271012703737e-05,

-2.719419553098845e-05,
1.033156362439946e-05,

-2.955581602348545e-06,
6.870538006159554e-07
-1.31693941515798le-07,
2.026221445272300e-08,
-2.361233864223112e-09,
1.921063600537676e-10

-9.809951611347394e-12
2.653279103876279e-13,

-2.319233372880782e-15,
-1.317187061896219e-17,
-2.407012535891711e-19,
-4.433880118258184e-21,
2.735903505022465e-26,
1.596981542963505e-03,

-8.528373703732939e-03,
1.086196106746229e-02,
3.846897564267238e-02,

-1.976730935505202e-01,
4.554354535725906e-01,
-7.004572410351102e-01,
8.039373333258482e-o1,
-7.256272931053900e-01,
5.302621924158757e-01,
-3.189146614438982e-01,
1.590513902863222e-01,

-6.573301084867467e-02,
2.225901012112530e-02,

-5.988950029420792e-03,
1.177842478515601e-03,

-1.182446502181467e-04,
-2.078456649373672e-05,
1.369232238676577e-05,

-3.801953769720645e-06,
7.081334352697583e-07,
-9.437638502624414e-08,
8.936766759591824e-09,
-5.794705377000146e-10,
2.428464299936500e-11,

-6.021234370560187e-13,
7.724462474106624e-15,

-5.516671952418855e-17,
6.595904191359686e-19,
2.056900519282188e-24
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/* Denominator coefficients */

static double denl[30]=
{ -1.135087146556161e+01,

6.093263249866681e+01,
-2.061911065822222e+02,
4.948035132731752e+02,
-8.983923725483406e+02,
1.286089683000355e+03,

-1.493744793706265e+03,
1.437421369904793e+03,
-1.164296889620834e+03,
8.034380606787025e+02,
-4.766521786713293e+02,
2.447238944329588e+02,
-1.092086442202805e+02,
4.244916189022602e+01,
-1.43700610467757e+01,
4.225905264868553e+00,
-1.073931722819647e+00,
2.338884065807147e-01,
-4.313167043461474e-02,
6.624455192814090e-03,
-8.286628884990565e-04,
8. 195010027770559e-05

-6. 160373942002916e-06,
3. 345416930770729e-07,

- .227921681486361e-08,

2. 775475801830879e-10,
-3. 410287170188014e-12,
2.517895554215908e-14,
-2.74218529250783ie-16,
1.276107428420735e-33

1;

/* Does not apply for the case 1 */

static double num2(1][1][1]= {1.0};

static double den2[l]={1.0};
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* 11 april 1991 *
* transferhplinv.txt (Optimal case input 1) *
* Header file for transfer function variables *
* Sampling time 0.02 sec *
* CAPT D. Bertrand *

************ ****** * ****** *** ******* * ******* ** * *** ****** *** **********

/* Define the case I

#define c 3 /* X-29 inverse closed-loop conf. structure */

/* Define the variables */

/* Level 1 */
Idefine ordi 30 /* order of the X-29 closed-loop conf. */
#define num in 1 /* number of inputs to the X-29 closed-loop conf.*/
#define reg vecl 90 /* regression vector =ord*(num_in+numout) */
Idefine num feed 89 /* feedback layer =regvec-numin */
idefine num-comd 90 /* command layer = reg_vec */
Idefine num-cont 90 /* control layer = regvec */
#define num-out 2 /* output layer = num out */

/* Level 2 */
Idefine ord2 30 /* order of the X-29 inverse closed-loop conf.*/
Idefine num in2 2 /* number of inputs to the X-29 inverse closed-loop*/
fdefine reg vec2 90 /* regression vector =ord*(numin+num out) */
#define num feed2 88 /* feedback2 layer = reg_vec-numout */
Idefine num-comd2 90 /* command2 layer= reg_vec */
#define num-cont2 90 /* control2 layer = reg vec */
#define num-out2 1 /* output2 layer = numin */

/* Declarations */

static double ts={0.02};
static double alphal={1.0);
static double alpha2={0.01};
static double alpha3={O.001};

static char *input name[]={"Illegal Input","Random Binary",
"A Pulse input of 1 degree for I sec (input l)","(input 2)");

static char *state name[J={"Illegal State","u(t)","alpha(t)",
"q(t)", "theta(t)"};

/* Numerator coefficients of the X-29 closed-loop conf. *1
/* Order is al-a30 & ql-q30 for the indices */

static double numl[l][2][30]=
{ 7.217941790123916e-03,

4.136127382910360e-02,
-4.669768974859352e-01,
1.740915378910785e+00,

-3.860972079490637e+00,
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5.910026001863514e+00,
-6.603623724905617e400,
5.461815191735525e+00,

-3.270158987514236e+00,
1.276667299594394e+00,

-1.520754074600887e-01,
-2.051159049792766e-01,
1.945345556135285e-01,

-1.056009840779120e-01,
4.305024816802305e-02,

-1. 421564425160682e-02,
3. 890465813729260e-03,

-8. 7 53878576499303e-04,
1. 567504967623089e-04,

-2. 108457015082093e-05,
1 .925419095923840e-06,

-9. 276539501321390e-08,
-7. 822692189116382e-10,

3. 606658455830145e-i0,
-1. 731282437642258e-11,
2.828830223439087e-13,

-1. 035513245405491e-15,
3.084625475376078e-17,
6.087629110463293e-20,
2.188724968031335e-33,
3.030279064248020e-02,

-2.176617363311379e-01,
7.199418522371559e-01,

-1.445887468831245e+00,

1.937232438753256e+00,
-1.744010585139847e+00,
9.046191030770956e-01,
7.520983838907114e-02,
-6.942919440655828e-01,
8.180108728891611e-01,
-6.296351231172181e-01,
3. 7 15234366137601e-01,

-1. 779572331145785e-01,
7.113143215820728e-02,
-2.403378264476541e-02,
6.879198166074046e-03

-1.6561'0902514149e-03,
3.302644120224971e-04,

-5.332055003518747e-05,
6.76444 7 617547078e-06,

-6.496114358148548e-07,
4. 502381161607562e-08,

-2. 099033629117875e-09,
5. 705913270502097e-ii,

-4. 936196094124739e-13,
-1.463168035258393e-14,
3.339921369161159e-16,

-1. 652969295184519e-18,
4.511432668157739e-20,
1.618497006367023e-31
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/* Denominator coefficients */

static double denl[30]=

{ -8.702573379180253e+00,
3.624185054971434e+01,

-9.637476611139380e+01,
1.840944567247478e+02,

-2.691932874966105e+02,
3.1 3 3 4 2 55 8 7 022512e+02,

-2.979853544537900e+02,
2. 3 5 8 1 62965122712e+02,
-1.574535322515088e+02,
8. 9 6 7 5 9 0202531342e+01,

-4. 3 9 5 1246 4 8498849e+01,
1. 8 6 6 2 5 10 64997256e+01,

-6. 8 9 4 4 6 32 99309602e+00,
2.2 18 0 0 46 4 4 230438e+00,

-6.1 9 4 7 3 6024651941e-01,
1.4 9 090 2 39 2 482576e-01,

-3.055808663119203e-02,
5.250501120595874e-03,

-7.41 7 9 15 2 6 8 847094e-04,
8.426982161281500e-05,

-7. 5 0 9 2 2 7 9 2 6 740248e-06,
5.1054414 6 8225222e-07,

-2. 5 5 9 0 0 18 2 0 930592e-08,
8.981854293991370e-10,

-2.0 2 4 4 2 2 8 7 6299269e-11,
2.556068754189784e-13,

-1. 8 5 8 3 9 10 8 3 686945e-15,
2.0707848 4 9 258401e-17,
-5.231469022776601e-21,
-8.203828579087643e-38

1;

/* Does not apply for the inverse plant *1

static double num212][l][30]= {.0);

static double den2[30]={l.0};
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* 6 Sept 1991 *
* transferA4inv.txt *
* Header file for transfer function variables *
* Sampling time 0.1 sec *
* Capt D. Bertrand *
*********************************** **********************

/* Define the case I */

#define c 4 /* A4 inverse plant structure */

/* Define the variables */

/* Level 1 */
Idefine ordl 4 /* order of the A4 plant */
Idefine num in 1 /* number of inputs to the A4 plant */
Idefine reg vecl 20 /* regression vector =ord*(num_in+numout) */
Idefine num feed 19 /* feedback layer =reg-vec-numin */
Idefine numcomd 20 /* command layer = regvec */
#define num-cont 20 /* control layer = regvec */
Idefine numout 4 /* output layer = nun_out */

/* Level 2 */
#define ord2 4 /* order of the A4 inverse plant */
#define numin2 4 /* number of inputs to the A4 inverse plant */
Idefine reg-vec2 20 /* regression vector =ord*(num_in+num out) */
#define numfeed2 16 /* feedback2 layer = reg vec-num_out */
#define num-comd2 20 /* command2 layer= regvec */
Idefine num cont2 20 /* control2 layer = reg vec *1
Idefine num-out2 1 /* output2 layer = numin *1

/* Declarations */

static double ts={0.1};
static double alphal={l.0};
static double alpha2={l.0};
static double alpha3={0.O01);

static char *inputname[]={"Illegal Input","Random Binary",
"A Pulse input of 1 degree for 1 sec (input l)","(input 2)"};

static char *statename[]={"Illegal State","u(t)","alpha(t)",
"q(t)I", "theta(t)"};

/* Numerator coefficients for the A4 plant*/
/* Order is ul-u4, al-a4, ql-q4 & tl-t4 for the indices *1

static double numl[l](4](4]=
{
2.713068210091762e-05,
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7 .724759756833066e-05,
-7. 055791100896158e-05,
-2 .257937441507707e-05,
-3. 461928651266444e-02,
4. 502235817679079e-02,
1. 371511259671188e-02,

-2.412412258081098e-02,
-1. 986449763497378e-01,
5. 800247578329634e-01,
-5.641366908427741e-01,
1.827569093595484e-01,

-7.705180437452608e-03,
7.478124872434933e-03,
6.964010411101729e-03,
-6.738625984288427e-03

/* Denominator coefficients for the A4 plant *1

static double denl[4]=
{
-3.694923643854822e+00,

5.180217304754828e+00,
-3.275499735648201e+00,
7.902148612567799e-01

/* Does not apply for the inverse plant */

static double num2E4]J1][4]= {O.0};

static double den2[4]={0.0};
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* 28 july 1991 *
* transferl4inv.txt *
* Header file for transfer function variables *
* Sampling time 0.02 sec *
* CAPT D. Bertrand *

*****************************************************

/* Define the case # */

Idefine C /* X-29 Inverse plant structure */

/* Define the variables */

/* Level 1 */
Idefine ordl 14 /* order of the X-29 Plant */
#define num in I /* number of inputs to the X-29 Plant */
Idefine reg vecl 42 /* regression vector =ordl*(num in+numout) */
Idefine num feed 41 /* feedback layer =regvec-num_in */
Idefine num-comd 42 /* command layer = regvec */
Idefine num -cont 42 /* control layer = regvec */
#define numout 2 /* output layer = numout */

/* Level 2 */
#define ord2 14 /* order of the X-29 inverse plant *1
#define numin2 2 /* number of inputs to the inverse plant */
Idefine reg vec2 42 /* regression vector =ord2*(numin+numout) */
#define num feed2 40 /* feedback2 layer = regvec-num out *7
idefine numcomd2 42 /* command2 layer= regvec */
Idefine num cont2 42 /* control2 layer = reg vec *1
#define numout2 1 /* output2 layer = numnin */

/* Declarations */

static double ts={0.02};
static double alphal={l.0};
static double alpha2={0.01};
static double alpha3={0.001};

static char *inputname[]={"Illegal Input" ,"Random Binary",
"A Pulse input of 1 degree for I sec (input l)","(input 2)");

static char *statename[]={"Illegal State","alpha(t)",
"q (t) "} ;

/* Numerator coefficients for the X-29 plant */

static double numl[l](2J(14]=
{ -4.056931727527413e-04,

8.640985801235956e-04,
-9.645374778415317e-04,
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7.668732134167300e-04,
-3.355203324524325e-04,
2.002988600113831e-05,
4.423899844696599e-05,

-2.134656278755809e-05,
4.206573556321883e-06,

-2 .414898471374619e-07,
3 .935541586379038e-09,

-1. 296789423146734e-09,
6. 012915966444080e-ll,
6. 139928164096763e-13,

-1 468836867932399e-02,
5. 067239044670480e-02,

-8. 185463286921646e-02,
8. 351205855023736e-02,

-5.856919312782694e-02,
2.927929467703660e-02,
-1.082648765944083e-02,
2.950804399305770e-03,
-5.601566387111508e-04
6.631958214738630e-05,
-2.050337748895240e-06,
-1.175920855414365e-07,
4.286644733642849e-09,
6.953985652098497e-111;

/* Denominator coefficients for the plant *1

static double denl[14]=
{ -4.729739487034623e+00,

9.756583616420810e+00,
-1.169645031172698e+01,
9.179964647228649e+00,

-5.025697420203761e+00,
1.978913683674686e+00,
-5.630838727994958e-01,
1.137480768724702e-01,

-1.554252095215423e-02,
1.300296942834350e-03,
-5.737414053144769e-05,
1.055438679886130e-06,

-4.924500562373306e-09,
1.114762000808644e-10

};

/* Does not apply for the inverse plant *1

static double num212](1][14J= {1.0};

static double den2[14J={1.0};
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* 28 july 1991 *
* transfer1614hp.txt OPTIMAL CASE
* Header file for transfer function variables *
* Sampling time 0.02 sec *
* CAPT D. Bertrand *

/* Define the case 1 *1

#define c 6 /* controller and plant in series (optimal case) *1

/* Define the variables *1

/* Level 1 */
#define ordi 16 /* order of the controller */
#define mum in 2 /* number of inputs to the controller */
#define reg veci 64 /* regression vector =ordl*(num in+numout) */
#define hum feed 62 /* feedback layer =regvec-numin */
#define num-comd 64 /* command layer = reg_vec */
#define num cont 64 /* control layer = reg_vec */
#define num-out 2 /* output layer = numout */

/* Level 2 */
#define ord2 14 /* order of the plant */
#define mum in2 2 /* number of inputs to the plant */
#define reg vec2 56 /* regression vector =ord2*(num in+num out) */
#define num feed2 54 /* feedback2 layer = reg_vec-num out *7
Idefine num comd2 56 /* command2 layer= reg vec */
fdefine mum cont2 56 /* control2 layer = reg vec */
Idefine num-out2 2 /* output2 layer =num In */

/* Declarations */

static double ts={0.021;
static double alphal={l.0};
static double alpha2={l.0};
static double alpha3={O.001};

static char *input name[]={"Illegal Input","Random Binary",
"A Pulse input of I degree for 1 sec (input l)","(input 2)"};

static char *statename[]=j{"Illegal State".,"alpha(t)",
"q(t) "};

/* Numerator coefficients for the controller */

static double numl[2)[2][16]=
{ -9.859880629593550e+o1,

4.651873138146647e+02,
-1.051882105730881e+03,
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1.519154936044425e+03,
-1.557965738284664e+03,
1.211042887906508e+03,

-7.496709549954828e+02,
3.744973736643639e+02,

-1.478541553785084e+02,
4.466434156470294e+01,

-1.003081522244191e+01,
1.620404514735607e+00,

-1.742798572922879e-01,
9.724575442910928e-03,
-2.03554707117043le-04,
8.745388073736235e-13
-4.388188326607877e+01,
-4.616177234468056e+01,
6.3921111456G2509e+02,

-1.397448977654542e+03,
1.523867810494335e+03,

-9.979620575051404e+02
4.152396606507909e+02,

-1.061478517036687e+02,
1.269598903999647e+01,
1.194080535740361e+00,

-7.055549558186406e-01,
1.056283616703849e-01,
-6.324466886079779e-03,
7.096463377705847e-05,
3.281163826433534e-06,
3.825564625565415e-li,
3.792362230268161e+01,
-1.803218187444186e+02,
3.809935405874783e+02,

-4.826993636192602e+02,
4.091641992932675e+02,

-2.334446181168790e+02,
7.988665887868338e+01,
-7.028001865307544e+00,
-8.303847629806290e+00,
5.212740720761116e+00,
-1.697806802249656e+00,
3.603723294285617e-01,
-4.873193405327581e-02,
3.115239986192253e-03,
-7.052248870239583e-05,
5.975861393289898e-13,

-2.244300433086851e+01,
6.381138411559539e+01,

-1.296062641440044e+01,
-1.732261722889801e+02,
3.201844275030160e+02,

-2.877486645238489e+02,
1.553970808919718e+02,

-5.263632804841900e+01,
1.052424851243618e+01,
-8.052229681859826e-01,
-1.294834168322548e-01,
3.491001117314470e-02,
-2.621648845901227e-03,
4.369675047097478e-05,
1.084703680918890e-06,
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2.614068553557722e-11

1;

/* Denominator coefficients for the controller */

static double denl[16]=
( -4.134112763067415e+00,

7.952036535343285e+00,
-9.679222466663568e+00,
8.264755004139751e+00,
-5.156472050247617e+00,
2.466202573916116e+00,
-9.526651742543444e-01,
3.043804172191035e-01,
-7.809450273438016e-02,
1.507657409431068e-02,

-2.062878392003597e-03,
1.878287444794598e-04,

-9.267211620365389e-06,
1.776861871651543e-07,

-4.692902509427273e-1l,
-3.103818469371239e-28

/* Numerator coefficients for the plant *1

static double num2(2)(2][14]=
{ -3.585263080640999e-05,

-2.777807450549119e-05,
4.539524991091781e-04,

-5.958420322347280e-04,
2.664995123886627e-04,

-5.610107617126658e-06,
-4.188469924792937e-05,
1.857095302063017e-05,

-3.454000472385976e-06
2.192568109666768e-07,
3.819556833218761e-09,

-4.268854429590967e-10,
-2.655110714860240e-13,
-5.118954168088873e-14,
-7.513347186476338e-04
8.561991155699999e-03,

-1.277978855932282e-02,
1.181476279265681e-03,
8.878987005693340e-03,

-7.486010702827839e-03,
2.988938381587536e-03,

-6.418478904496455e-04,
5.742794875096026e-05,
1.381940029905864e-06,

-4.971836625593487e-07,
1.801323508010827e-08,

-2.814170373926085e-11,
2.083960044277704e-12,

-4.056931727527413e-04,
8.640985801235956e-04,

-9.645374778415317e-04
7.668732134167300e-04,
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-3.355203324524325e-04,
2.002988600113831e-05,
4.423899844696599e-05,
-2.134656278755809e-05,
4.206573556321883e-06,
-2.414898471374619e-07,
3.935541586379038e-09,
-1.296789423146734e-09,
6.012915966444080e-11,
6.139928164096763e-13,

-1.468836867932399e-02,
5.067239044670480e-02,

-8.185463286921646e-02,
8.351205855023736e-02,

-5.856919312782694e-02,
2.927929467703660e-02,

-1.082648765944083e-02
2.950804399305770e-03,

-5.601566387111508e-04,
6.631958214738630e-05,

-2.050337748895240e-06,
-1.175920855414365e-07,
4.286644733642849e-09,
6.953985652098497e-1i

1;

/* Denominator coefficients for the plant '/

static double den2[14]=
{ -4.729739487034623e+00,

9.756583616420810e+00,
-1.169645031172698e+0l,
9.179964647228649e+0o,

-5.025697420203761e+0o,
1.978913683674686e+00,

-5.630838727994958e-01,
1.137480768724702e-0l,

-1.554252095215423e-02,
1.300296942834350e-03,

-5.737414053144769e-05,
1.055438679886130e-06,

-4.924500562373306e-09,
1.114762000808644e-10

;
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I**************** ***** ******** *** ****************************************

* 28 july 1991 *
* transferl6l4lim.txt LIMITED CASE *
* Header file for transfer function variables *
* Sampling time 0.02 sec *
* CAPT D. Bertrand *

/* Define the case 1 */

Idefine c 7 /* controller and plant in series (limited case) *I

/* Define the variables */

/* Level 1 */
#define ordl 16 /* order of the controller */
#define num in 2 /* number of inputs to the controller */
Idefine reg vecl 64 /* regression vector =ordl*(num in+numout) */
#define nun feed 62 /* feedback layer =regvec-numin */
Idefine nun-comd 64 /* command layer = regvec *1
#define num-cont 64 /* control layer = reg_vec */
#define num-out 2 /* output layer = num_out */

/* Level 2 */
#define ord2 14 /* order of the plant */
#define num in2 2 /* number of inputs to the plant */
#define reg vec2 56 /* regression vector =ord2*(num in+numout) */
Idefine numfeed2 54 /* feedback2 layer = reg_vec-num_out *7
#define num-comd2 56 /* command2 layer= regvec */
#define num-cont2 56 /* control2 layer = reg vec */
Idefine numout2 2 /* output2 layer = num in */

/* Declarations */

static double ts={0.02};
static double alphal={l.0};
static double alpha2={1.0};
static double alpha3={0.001};

static char *inputname[]={"Illegal Input",
"A Pulse input of 1 degree for 1 sec (input 1)","(input 2)"};

static char *state_name[]={"Illegal State","alpha(t)",
"q (t) "} ;

/* Numerator coefficients for the controller *1

static double numl[2](2][16]=
{ -2.479711140348080e-01,

1.388546204672132e+00,
-3.546772405083324e+00,
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5.565578428016757e+00,
-6.095882090095444e+00,
4.985447353467308e+00,
-3.146599111301740e+00,
1.554675660772483e+00,

-6.059910645955577e-01,
1.864047652459634e-01,

-4.437074509219546e-02,
7.795354757026977e-03,

-9.144571099421236e-04,
5.442429543013751e-05,

-1.205376035060677e-06,
4.026048729360174e-10,

-2.613658394640916e-01,
1.180069353917421e+00,

-2.158547648322319e+00,
1.997245892440489e+00,

-8.979474879152747e-01,
7.149916375388088e-02,
1.116609373279331e-01,

-5.083590416542716e-02,
8.459759671103129e-03,
-2.947817097250782e-04,
1.181801294794504e-04,

-5.270969302269626e-05,
-1.464615832096148e-05,
6.312847660653519e-06,
-6.006135234343973e-07,
1.681353315103645e-08,
2.536536100527425e-ol,

-1.564660964790082e+00,
4.360350547653734e+00,

-7.303031625580367e+00,
8.252324911573620e+00,

-6. 695221168985064e+00,
4. 052659667284534e+00,

-1. 877182667414060e+00,
6. 754625922866597e-01,

-1. 891390637720003e-01,
4. 050225911885580e-02,

-6. 338009693289473e-03,
6. 545692523768167e-04,
-3.537724466211512e-05,
7.202327264979368e-07,
4.830176852017413e-10,
-3.483309500992426e-01,
1.783428912751852e+00,

-3.819546231203830e+00,
4. 333227159290175e+00,

-2. 566270736673481e+00,
3. 512741534094985e-01,
6. 441742008168490e-01,

-5. 713335098825008e-01,
2. 503842147433657e-01,

-6. 674350820441199e-02,
1. 043571874877550e-02,

-6. 446155271970164e-04,
-6.960491892187438e-05,
1.575972011659112e-05,

-9.835640847950234e-07,
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2.017172272019888e-081;

/* Denominator coefficients for the controller */

static double denl(161=
{ -6.625803214724185e+00,

1.987480946391011e+01,
-3.598199208859263e+01,
4.432944619799812e+01,

-3.979919039256840e+01,
2.722951670474420e+01,

-1.461991140558815e+01,
6.267921584738075e+00,

-2.160255681723939e+00,
5.947802317875547e-01,

-1.274873020013756e-01,
2.017521031941172e-02,
-2.124031340776859e-03,
1.171829283955842e-04,
-2.459886242548657e-06,
1.353889590168705e-22,

1;

/* Numerator coefficients for the plant */

static double num2[2](2][14]=
{ -3.585263080640999e-05,

-2. 777807450549119e-05,
4. 539524991091781e-04,

-5. 958420322347280e-04,
2. 664995123886627e-04,

-5. 610107617126658e-06,
-4. 188469924792937e-05,
1.857095302063017e-05,

-3.454000472385976e-06,
2.192568109666768e-07,
3.819556833218761e-09,

-4.268854429590967e-lo,
-2.655110714860240e-13,
-5.118954168088873e-14,
-7.513347186476338e-04,
8.561991155699999e-03,

-1.277978855932282e-02,
1.181476279265681e-03,
8.878987005693340e-03,
-7.486010702827839e-03,
2.988938381587536e-03,

-6.418478904496455e-04,
5.742794875096026e-05,
1.381940029905864e-06,

-4.971836625593487e-07,
1.801323508010827e-08,

-2.814170373926085e-11,
2.083960044277704e-12,
-4.056931727527413e-04,
8.640985801235956e-04

-9.645374778415317e-04
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7.66873213416730Oe-04
-3.355203324524325e-04,
2. 0 02988600113831e-05,
4.423899844696599e-05,
-2.134656278755809e-05,
4.20 6 573556321883e-06,
-2.414898471374619e-07,
3.935541586379038e-09,
-1.296789423146734e-09,
6.012915966444080e-l1,
6.139928164096763e-13,
-1.468836867932399e-02,
5.0 6 7239044670480e-02,
-8.185463286921646e-02,
8.3 51205855023736e-02,
-5.856919312782694e-02,
2.92 7 929467703660e-02,
-1.08 2 648765944083e-02,
2. 9 5 0 804399305770e-03,

-5. 6 01566387111508e-04,
6.6 31958214738630e-05,

-2.050337748895240e-06,
-1.1 7 5920855414365e-07,
4. 2 8 6 644733642849e-09,
6. 9 5 3 985652098497e-ll

/* Denominator coefficients for the plant */

static double den2[14]=
{ -4.729739487034623e+oo,

9.756583616420810e+00,
-1.1 6 9 645031172698e+01,
9.1 7 9964647228649e+00,

-5.025697420203761e+00,
1.9 7 8 913683674686e+00,

-5. 6 3 0838727994958e-01,
1.137480768724702e-01,

-1. 5 5 4 2 52095215423e-02,
1. 3 0 0 296942834350e-03,

-5. 7 3 7 414053144769e-05,
1.055438679886130e-06,

-4. 9 2 4 5 00562373306e-09,
1.11 4 762000808644e-10
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APPENDIX D: MATLAB M-FILES

% contdiscliml.m
% input files:...hinflim.mat
% output files:.. .tfliml/2.mat, contdiscliml/2/a/q.met, trueliml/2/a/q.mat

%"THIS M-FILE CREATES DISCRETE & CONTINUOUS BODE PLOTS FOR THE PLANT
% STATE REPRESENTATION OF Hinf LIMITED PERFORMANCE X-29 model, CASE #2.
% Altitude - 30000 feet
% Mach# = .5

t The A,B,C and D matrices are first balanced to measure a reasonable condition
% number for the A matrix, then converted from a continuous to a discrete state
% space model using Ts=0.02 sec as the sampling time, and finally converted to
% a transfer function form using,%
% H(z)= C*inv(zI-A)*B= Y(z)/U(z) (1)
%

I By replacing the z-transform with the I/q backward shift operator, the
I numerator and denominator terms of that transformation may be used to obtain
% the DARMA model,
%
% A(q)y(t) = B(q)u(t) (2)
%
% Reworking equation (2) gives (Ref. 7:pp. 71-72],
%

t y(t) = B(q)u(t) - (A(q) - 1)y(t) (3)
%

% Expanding the matrix polynomials and rearranging it to obtain two recursive
t equations of the form similar to equation (3.8) of Chapter III gives,%
I Yi(t) = SUMj[Bij*Uj(t-j) - SUMj[Aj*Yj(t-j)] (4)
%
t where SUM indicates a summation operation
% i indicates the number of outputs
% j indicates the number of past input and output measurements
% Aj terms are the denominator coefficients
% Bij terms are the numerator coefficients
%

% The algorithm referring to the control input in USERIO of the case request
% RQ LEARNRSLT of Appendix A, is represented by equation (4). Control (j]
% specifies the first 30 elements of the control layer, which are the past 30
% inputs, [Uj(t-j)], whereas control (30*(i+l)+j] specifies the second and the
% third block of 30 elements, which are the past 30 outputs, [Yj(t-j)], for
% each of the two ouput elements.
% Finally, the coefficients for B(q) and A(q)-l matrices of equation (3)
% are represented in the Transfer.h files as the numerator and denominator
% coefficients for both cases, Optimal and Limited performance.

t get the a,b,c & d matrices

load hinflim.mat

a=acgf;
b=bcgf;
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c=ccgf;

d=dcgf;

% balance a ,b and c matrices.

[ab,bb,cb,g,t]-obalreal(a,b,c);

% compute continuous Bode

disp(' calculating continuous Bode please wait')

w=logspace(-3,2,1024);
(magc,phasec]=bode(ab,bb,cb,d,l,w);
mag=20*loglO(mag);

% Compute discrete time system

t=.02; % SAMPLING TIME

[ad,bd]=c2d(ab,bb,t);

% Compute transfer function for the two inputs

(numl,denl]=ss2tf(ad,bd,cb,d,l);
[num2,den2]=ss2tf(ad,bd,cb,d,2);

%save tfliml numl denl
%save tflim2 num2 den2

% Discrete Bode plot calculations

disp('')
disp(' calculating discrete Bode Nyquist 50Hz T=.02 ')

[mag,phase]=dbode(ad,bd,cb,d,l,w);

loglog(w,magc(:,4),50*w,mag(:,l))
title('X-29 Continuous and Discrete Alpha Frequency Response')
title(' Optimal case - input 1 0)
xlabel('Altitude = 30000 feet frequency (Hz) Mach =.5'),
ylabel('magnitude ')
text(0.01,.0001,'continuous ')text(.01,.00001,'discrete --- ')

meta contdisclimla
pause

loglog(w,magc(:,2),50*w,mag(:,2))
title('X-29 Continuous and Discrete Q Frequency Response ')
title(' Optimal case - input 2
xlabel('Altitude = 30000 feet frequency (Hz) Mach -.5'),
ylabel('magnitude ')
text(0.1,.001,'continuous ')
text(.l,.0003,'discrete --- ')
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mneta contdisclimiq

f=w;
m=mag (: .1);
%save truelimla f m

ui=mag(: ,2);
%save truelimlq f m
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%wgtn. M

%This matlab file calculates the SVD of the weight matrices,
%which are composed of the connections weights between the
%two hidden layers. The first hidden layer has 42 elements
%and the second hidden layer has been tested with 30, 21,
%12, 8 and 5 elements.

%The input .nnp files are from the optimal controller network 1
%of case #6 or case6h2.nnd.

load c6h230.nnp %Load the .nnp files.
load c6h221.nnp
load c6h212.nnp
load c6h28.nnp
load c6h251.nnp
load c6h22.nnp

Em,nl]=size(c6h230); %Obtain the size of each matrix.
tm,n2]=size(c6h22l);
[m,n3]=size(c6h212);
[m,n4]=size(c6h28);
[m,n5]=size(c6h251);
[m,n6J=size(c6h22);

tfl=c6h230(:,3:nl); %Get rid-off the first two elements.
tf2=c6h221(: ,3:n2);
tf3=c6h212(: ,3:n3) ;
tf4=c6h28 (: ,3:n4) ;
tf5=c6h251(: ,3:n5);
tf6=c6h22 (: ,3:n6);

t=0:100:9900; %Time vector.

al=zeros((nl-2)/30,30); %Divide the matrix into blocks of which
a2=zeros((n2-2)/2l,21); % the number of columns equals the number
a3=zeros((n3-2)/l2,12); % of elements in the second hidden layer.
a4=zeros((n4-2)/8,8);
a5=zeros( (n5-2) /5, 5);
a6=zeros((n6-2)/2,2);

for i=l:m % Calculate the actual SVD's.

sl(:,i)=svd(al);
a2 (: )=tf2 (i, :);
s2(:,i)=svd(a2) ;
a3(:)=tf3(i, :);
s3 (: , i) =svd (a3);
a4(:)=tf4(i, :);
s4(: ,i)=svd(a4) ;
a5(:)=tf5(i,:);
us5(: ,i) =svd (a5);
a6(:)=tf6(i, :) ;
s6(: ,i)=svd(a6);

end;

i=find(sl<.6); %Get rid-off the insignificant values.
sl(i)=zeros(i);
i=find(s2<.54);
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s2(i)=zeros(i);
i=find(s3<.45) ;
s3(i)=zeros(i);
i=find (S4<. 39);
s4(i)'=zeros(i);
i=find(s5<.35);
s5(i)=zeros(i);
i=find(s6<.30);
s6(i)=zeros(i);

axisu(O 10000 0.1 6J)

title('SVD plot of the wgt matrix (hidden 2 -30 elements)')
xlabel('Number of Epochs')
ylabel( 'SVD')
meta svd4l
pause

plot (t,s2' )
title('SVD plot of the wgt matrix (hidden 2 -21 elements)')
xlabel(INumber of Epochs')
ylabel( 'SVD')
meta svd42
pause

plot(t,s3','-')
title('SVD plot of the wgt matrix (hidden 2 -12 elements)')
xlabel('t~umber of Epochs')
ylabel( 'SVD')
meta svd43
pause

plot (t~s5',-,
title('SVD plot of the wgt matrix (hidden 2 - 5 elements)')
xlabel('Number of Epochs')
ylabel( 'SVD')
meta svd44
pause

plot(t,s6'-'
title('SVD plot of the wgt matrix (hidden 2 -2 elements)')
xlabel('Number of Epochs')
ylabel ( SVD')
meta svd45
pause
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% spcallin.i
% input files:. ...inputliml/2.nnp, plantliml/2.nnp
% output files: ... specliml/2.mat

%THIS N-FILE CREATES THE SPECTRUM RETURNS OF CASE #2 OF BOTH INPUTS
%WITH A 5 ARRAYS FUNCTION P=[Pxx,Pyy,Pxy,Txy,Cxy] WHERE Txy IS THE
%COMPLEX TRANSFER FUNCTION FROM X TO Y. P=SPECTRUM(X,Y,M) WHERE X= INPUT
%VECTOR, Y=OUTPUT VECTOR, AND M4=2048 PTS, WHICH DIVIDES BOTH VECTORS INTO
%SECTIONS OF 2048 POINTS EACH.
%PERFORM SPECTRAL ANALYSES ON THE TWO SEQUENCES X AND Y.

load inputliml .nnp
load plantlimi .nnp
load inputlim2 .nnp
load plant lim2 .nnp

xl=inputliml(l:2049,3);
yl=plantliml(l: 2049, 3);
zl=plantliynl(l:2049,4);
x2=inputlim2(1:2049, 3);
y2=plantlim2 (1: 2049, 3);
z2=plantlim2 (1: 2049, 4);

clear inputlimi plantliml inputlim2 plantlim2

disp(l)
Pal=spectrum(xl,yl, 2048, 1024);

disp (2)
Pql=spectruu(xl,zl,2048,1024);

disp (3)
Pa2=spectrum(x2,y2,2048,1024) ;

disp(4)
Pq2=spectrum(x2,z2,2048,l024);

save speclimi Pal Pql;
save speclim2 Pa2 Pq2;
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% splotsliml.m

% input files: ... specliml/2.mat, trueliml/2/a/q.mat
% output files:... TFliml/2/a/q.met

% THIS M-FILE COMPARES THE SYSTEM AND NETWORK ALPHA AND Q "FREQUENCY" RESPONSES
% FOR CASE #2 (LIMITED CASE) WITH RESPECT TO THE TWO INPUTS.

load specliml;
load speclim2;

[n,m) = size(Pal);
Fs=100;
fl = (l:n-l)/n*Fs/2;

load truelimla;
loglog(pi*fl,abs(Pal(2:n,4)),50*f,m)
title('Txy - Transfer function for Alpha (Limited case -input 1)')
xlabel(' Altitude= 30,000 feet frequency(hz) Mach= 0.5 ')
ylabel('Magnitude')
text(l.0,.001,'True system --- ')

text(1.0,.0005,'40k cycles _')

meta TFlimal
pause

load truelimlq;
loglog(pi*fl,abs(Pql(2:n,4)),50*f,m),
title('Txy - Transfer function for Q (Limited case -input 1)')
xlabel(' Altitude= 30,000 feet frequency(hz) Mach= 0.5 ')
ylabel( 'Mgnitude')
text(0.3,.02,'True system --- ')

text(0.3,.008,'40k cycles _')
meta TFlimql
pause

load truelim2a;
loglog(pi*fl,abs(Pa2(2:n,4)),50*f,m)
title('Txy - Transfer function for Alpha (Limited case -input 2)')
xlabel(' Altitude= 30,000 feet frequency(hz) Mach= 0.5 ')
ylabel('Magnitude')
text(l.0,.001,'True system --- ')

text(l.0,.0005,'40k cycles _')
meta TFlima2
pause

load truelim2q;
loglog(pi*fl,abs(Pq2(2:n,4)),50*f,m),
title('Txy - Transfer function for Q (Limited case -input 2)')
xlabel(' Altitude= 30,000 feet frequency(hz) Mach= 0.5 ')
ylabel('Magnitude')
text(0.3,.02,'True system --- ')

text(0.3,.008,'40k cycles _')
meta TFlimq2
pause
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%input files: ... hinflim.mat, stepliml/2.nnp
%ouput files: ... liml/2/a/q.met

%THIS H-FILE COMPARES THE SYSTEM AND NETWORK ALPHA 6 1Z "TIME" RESPONSE FOR%CASE #2 (LIMITED CASE) WITH RESPECT To THE TWO INPUTS.

load hinflim.mat
load stepliml.nnp
load steplim2.nnp
format long e

w1=steplim1(1:251,3) ;
zl=stepliml(1:25l,4) ;
w2=steplim2(l:251,3);
z2=steplim2 (1:251, 4);

clear steplimi steplim2

timel=EO:o.02:5]; % for the network response

% ul- input 1 and u2- input 2.

ul=Eones(1,1o1) zeros(1,3Oo);zeros(1,4o1)J1;
u2=fzeros(1,4o1);ones(1,1o1) zeros(1,300))';

(yl]=lsixn(acgf ,bcgf, ccgf ,dcgf,ul ,timel);
[y2 ]=lsim(acgf,bcgf,ccgf,dcgf,u2,tine1);

plot(time1,y1(:,1),time1,z1)
title('X-29 DESIRED AND ACTUAL ALPHA RESPONSE (limited case -input 1'xlabel('TIME - SEC')
ylabel ('DEGREES')
text(1.75,.6,'Desired --- '1)
text(.5,.12,'Actual --- '

grid
%meta limla
pause

plot(time1,y1(:,2),tire1,w1)
title('X-29 DESIRED AND ACTUAL QRESPONSE(liuited case -input 1)')xlabel(TIM.E - SEC')
ylabel ('DEGREES')
text(l.75,.6,'Desired--'
text(.5,.12,'Actual --- '

grid
%meta limlq
pause

plot (timel,y2(: ,l),time1,z2)
title('X-29 DESIRED AND ACTUAL ALPHA RESPONSE (limited case -input 2)')
xlabel('TIME - SEC')
ylabel ('DEGREES')
text(l.75,.6,'Desired --- )
text(.5,.12,'Actual --- '

grid
%meta lim2a
pause
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plot(tiinel,y2(:,2),timel,w2)
title('X-29 DESIRED AND ACTUAL Q RESPONSE(limited case -input 2)')
xlabel('TIME - SEC')
ylabel ('DEGREES')
text(l.75,.6,'Desired --- '

text(.5,.12,'Actual --- '1)

grid
Imeta lim2q
pause
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APPENDIX E: TABLE OF CONFIGURATIONS AND CASES

c
a Model Structure Control

Configuration s Header File
e Level I Level 2 Strategy
#

Simulation of the I MIMO n/a Const I Transfcr30hp
X-29 Closed-Loop (Optimal)

Plant

2 MIO n/a contsu I Transfer301im
(Limited)

identif. ofthe 3 SIMO MISO contstrl &2 Trmisferhplinv
Inverse Plant (case # 1) (inv. case #)

4 SIMO MISO contstl & 2 TransferA4inv
(A4 Plant) (A4inv.Plant)

5 SIMO MISO contstri & 2 Translerl4inv
(x-29 Plant) (x29Inv.Plan)

Simulation of the MIMO MIMO
Existing Controllers 6 (X-29cont.) (X-29 plant) constr2 trnsferl614hp

and the Plant (Optimal) (Optimal)

MIMO MIMO
7 (X-29cont.) (X-29 plant) contstr2 tunsferl6l4lim

(Limited) (Limited)

8 Pars : closure of the open-loop model of case #6
Part 11 closure of the open-loop model of case #7

* 30th order X-29 transfer function whose inverse is stable.
4th order A-4D plant whose inverse is unstable.

" 14th order X-29 plant whose inverse is very unstable.
* The closure implies the connection in series of the controllar and the plant,

and the intrusion of the negative feedback loop of gain I from the plant
outputs to the controller inputs.
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